
Copyright information to be inserted by the Publishers

Exploiting hardware capabilities in interior point
methods

Csaba Mészáros
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The increase of computer performance continues to support the practice of large-
scale optimization. Computers with multiple computing cores and vector processing
capabilities are now widely available. We investigate how the recently introduced
Advanced Vector Instruction (AVX) set on Intel-compatible architectures can be
exploited in interior point methods for linear and nonlinear optimization. We focus
on data structures and implementation techniques that utilize the new vector in-
structions. Our numerical experiments demonstrate that the AVX instruction set
provides a significant performance boost in our implementation on large-scale prob-
lem that have significant fill–in in the sparse Cholesky factorization, achieving up to
100 gigaflops performance on a standard desktop computer on linear optimization
problems for which the required Cholesky factorization is relatively dense.

1 Introduction

Interior point methods (IPMs) have proved to be efficient tools in practice for solv-
ing large-scale optimization problems [9, 3]. It has also been recognized that the
implementations of IPMs are able to exploit a wide variety of hardware features
[15]. During the development of IPMs, significant effort was concentrated on ex-
ploiting the hierarchical construction of the memory systems of modern computing
platforms [20]. When cache memory is exploited efficiently, the performance of
IPMs is highly dependent on the speed of the double precision arithmetic compu-
tations. The development of floating-point hardware on desktop computers started
with the 8087 arithmetic co-processor in 1980, replacing the software emulation
that was used before. Starting from the 80486 CPU in 1989 the floating-point unit
is integrated into the processor increasing communication and processing efficiency.
The development of floating-point hardware continued further and the speed of
floating-point instructions became comparable to that of integer instructions in the
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Pentium P5 platform, introduced in 1993. Recent improvements in hardware tech-
nology were made in the direction of parallel processing by implementing advanced
vector instructions and increasing the number of processing cores. The “Stream-
ing SIMD Extensions 2” (SSE2) vector instruction set, introduced in 2001, is able
to perform 2 “single instruction multiple data” (SIMD) double precision instruc-
tions on 128 bit SSE registers. The subject of our computational study is the
performance of the recently introduced AVX vector instruction set in the imple-
mentations of IPMs. These new vector instructions use 256 bit registers, allowing
4 SIMD double precision instructions, doubling the throughput of the SSE2 unit.
Readers interested in the history of hardware architectures are referred to [24].

In the second section of the paper we introduce the interior point algorithm and
the sparse Cholesky factorization, which is the most critical step of implementa-
tions. We outline the core implementation techniques used in [21], which is the
basis of our further improvements. In the third section some features of the AVX
vector processing unit are discussed that are important for efficiency in practice.
We describe how the data structures and implementation techniques are adjusted
to utilize these features. In Section 4 we present and discuss numerical results on
Intel I7-950 (Bloomfield) and I7-2700K (Sandy Bridge) platforms.

2 Interior point methods and the Cholesky factorization

Hereafter we consider the linear programming problem and the primal–dual log bar-
rier interior point method. Note that this choice has only notational consequences
because the underlying linear algebra of other interior point approaches is fairly
similar.

Let us consider the linear programming problem

min cTx (1)

Ax = b,
x ≥ 0,

where x, c ∈ <n, A ∈ <m×n is of full row rank, and b ∈ <m. The logarithmic
barrier problem corresponding to (1) is

min cTx− µ
n∑

i=1

ln xi, (2)

Ax = b, x > 0,

where µ is a positive scalar barrier parameter. A log barrier interior point method
approaches the optimal solution of (1) by a sequence of barrier problems (2), while
the barrier parameter is decreased toward zero. Following the classical introduction
of the primal–dual log barrier method, the algorithm can be derived by applying
Newton’s method to the Karush-Kuhn-Tucker system of (2). The computational
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task of the resulting method in every iteration can be reduced to a solution of a
system of linear equations whose matrix is ADAT , where D is a positive definite
diagonal scaling matrix that changes each iteration [3].

The Cholesky factorization

PADATPT = LLT , (3)

is computed, where L is lower triangular and the P is a permutation matrix that
preserves sparsity in L. The computed factorization is used in several backsolve
operations to determine predictor–corrector [17] and higher–order correction direc-
tions [8]. Therefore, the performance of Cholesky factorizations in the implementa-
tions is a critical issue [1, 26, 16, 18]. A significant development was done to exploit
the sparsity by using fill–reducing orderings [7, 2, 25] that made Cholesky factor-
izations more efficient. A further significant achievement was to increase the speed
of numerical computations by using sophisticated algorithms and data structures
that benefit from the processor architectures [20, 21]. One key point of improving
the performance of the sparse Cholesky decomposition is using dense computation
kernels to exploit the supernode structure of the factors [14]. A supernode is a set
of continuous columns of L that share the same nonzero structure. Thus, a row
in a supernode is either empty or fully dense. The following example shows the
supernodal decomposition of a lower triangular matrix with nonzero values marked
by a ∗. In the example there are 4 supernodes built from the following sets of
columns: (1,2,3), (4,5,6), (7,8,9) and (10,11,12,13,14,15).



∗
∗ ∗
∗ ∗ ∗

∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


In our implementation we have adopted the techniques described in [21] for han-

dling supernodes and for parallel computations. Our computational kernel can be
described as follows: after the empty rows are removed, supernode B is decomposed
into blocks:
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B =


B0

B1

B2

...
Bk

 ,
where B0 is a dense symmetric matrix and Bi>0 is dense rectangular. The supern-
ode partitioning and the decomposition of the supernodes are determined so that
the resulting Bi blocks fit entirely into the cache memory. In our factorization, the
supernodes are processed one by one. The inner cycle of the factorization computes
the numerical values of a supernode and its numerical contribution to the remaining
set of the matrix as follows:

1. Compute the Cholesky decomposition B0 = L0L
T
0 .

2. Do parallel for i = 1, . . . , k

Update Bi ←− BiL
−T
0 by solving L0B̄

T
i = BT

i and overwriting Bi by B̄i.

end do

for i = 1, . . . , k

3. Do parallel for j = 1, . . . , i− 1

Compute the rectangular update matrix Uj = BiB
T
j .

end do

4. Compute the lower triangular part of the symmetric update matrix Ui =
BiB

T
i .

5. Do parallel for j = 1, . . . , i

Subtract the dense update matrices Uj from the remaining submatrix.

end do

end for

The algorithm exploits the cache memory by re-using the data of L0 in steps 1
and 2 and the data of Bi in steps 3 and 4. It is easy to see that the operation count
is maximal for a given cache size if the blocks B1, . . . , Bk−1 are square. Therefore
the partition is determined accordingly.

The last group of columns in L that share the same structure are referred as the
dense window. The processing of this part of the factorization is especially efficient
because the update step can be done in dense mode as well. In our implementation
this step is combined with the computation of the update matrices, which further
improves efficiency by reducing memory operations.
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3 Implementation for the new vector instruction set

The platform on which our numerical experiments are done is Intel’s Sandy Bridge
architecture, which implements the new set of vector instructions [10]. We outline
the most important features and properties of the vector execution unit of this ar-
chitecture [11] and describe how they are taken into account in our implementation.

The instructions are performed on processing ports that work as pipelines. The
floating-point multiplication takes 5 processor cycles to complete and the floating-
point addition takes 3 processor cycles. The multiplications and additions are
performed on different ports. Therefore a multiplication can be performed in par-
allel to an addition if there are no data dependencies between these operations.
The processing ports can start to process a new instruction in every processor cycle
while the previous operations are still processed, i.e., the throughput of these pro-
cessing ports is one operation per processor cycle. This can be achieved only if there
is no data dependency between these operations and the data is available in the
processor. In this way, the theoretical maximum of double precision floating-point
operation throughput of this architecture is 2 vector operations per processor cycle
in every processor core. Since the AVX registers contain 4 double precision data
and the standard clock speed of the I7-2700K CPU is 3.9 GHz and the processor
has 4 cores, this translates to a theoretical double precision performance of 124.8
gigaflops. This can be achieved with a process that can maintain a sufficiently long
queue of independent addition and multiplication instructions. Our other test ma-
chine is the older I7-950 CPU that performs SSE4.2 vector instructions in 4 cores
at the clockspeed of 3.33 GHz, resulting in 52.8 gigaflops theoretical maximum per-
formance in double precision. In both platforms each core has a dedicated 32K L1
cache and 256K dedicated L2 cache, while the 8MB L3 cache is shared among the
cores.

Besides the floating-point computations, any numerical process should supply the
necessary input data for the execution units of the processor and store the results.
Since memory read/write operations are, in general, slower than the execution of
arithmetic operations in registers, this often presents a bottleneck in the compu-
tations and degrades performance because of stalls while the execution units wait
for the completion of memory operations. The Sandy Bridge architecture has 2
memory read ports that perform 128 bit operations, and since these ports work
in parallel as pipelines, the maximal theoretical memory read performance of the
platform is 256 bits, i.e., one AVX register per core in each processor cycle. To
achieve this performance the data of the vector operations should be in the L1
cache and aligned on 32 bytes boundary. When the data is not aligned or does not
reside in the L1 cache, additional penalties apply. Thus, the maximal throughput
of one processor core is 2 floating-point vector instructions but only one vector read
operation, i.e., each data should be used in at least two arithmetic operations, oth-
erwise the memory operations will be a limiting factor. This means that potentially
the matrix–matrix operations can be utilized by the vector instructions efficiently.
We investigate steps 3 and 4 of the algorithm, which perform the majority of the
floating-point computations of the Cholesky factorization as dense matrix–matrix
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multiplications. Note that loading data from the L1 cache memory takes several
clock cycles. Thus load operations should be started several clock cycles before the
data is needed.

Summing up, an efficient implementation should take into account the following
considerations:

•Align data of the vector operations on 32 byte boundary for efficient access.

•Organize cycles on cache line boundary (128 byte).

•Organize the computations into sequences of at least 5 independent multiplica-
tions and 3 independent additions.

•Preserve AVX registers to preload data from the L1 cache memory.

•Use prefetch instructions to move data from the higher level cache / main memory
into the L1 cache memory.

The previous considerations build a strong case for reducing the data dependency
and maximizing the number of floating-point operations with each data loaded into
a vector register. Therefore, we decided that the AVX registers will contain column–
wise elements from Bi. Since each AVX register stores 4 double precision data, the
most natural way is to represent the Bi blocks as sequences of column–wise 4 × l
dense submatrices, where l is the number of columns in B. Our process in the
inner loop reads one column with 4 double precision elements from Bi and Bj and
computes their contribution to the corresponding 16 elements of Ui by performing
4 vector multiplications and 4 vector additions. During these operations an appro-
priate permutation of the floating-point numbers inside both input AVX registers
is applied to generate all necessary pairing of the input data for the update. The
16 update values are stored in 4 AVX registers and the update cycle is performed
with each column of B, i.e., l times. Thus, intermediate results are always kept in
registers and only the final values of Ui are written into memory.

To ensure efficient memory accesses we follow the rules listed below:

•The first element of B1 is aligned on 128 byte boundary.

•During the partitioning of factors into supernodes, l is set to be a multiple of 4.

• l is set such that 4l double precision values fit “snugly” into the L1 cache memory
and l2 double precision values fit “snugly” into the L3 cache memory.

The above rules ensure that each memory read operation is aligned on 32 bytes
and each 4× l block is aligned on the cache line. For highest efficiency, the process
is implemented in assembly language. We allocated the 16 available AVX registers
as follows:

•4 registers accumulate the elements of Ui. These are updated by vector additions.

•6 registers store intermediate results, computed by vector multiplications.

•The remaining 6 registers are used to preload and hold the input data.
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A 3–way unrolling was necessary to circulate the registers through the process,
and a further 4–way unrolling was implemented to keep the cycles on the 128 byte
cache line boundary.

We can summarize the properties of our implementation as follows:

•8 floating-point vector operations are performed for each pair of vector load
operations.

•Loading data can be started an average of 10 processor cycles before needed.

•All load operations are aligned on 32 byte boundary.

•Cycles are aligned on cache line (128 byte) boundary, allowing prefetch instruc-
tions to hide cache latency.

In our experiments we choose l = 224, which fulfilled all requirements noted
above and proved to be efficient in our experiments. The most critical parts of
our implementation were coded in assembly language, while the whole code was
compiled and linked by the Intel C compiler version 11.1.072.

We would like to mention that BLAS [13] is a popular tool among the develop-
ers of mathematical software and it can achieve high performance. But, for us, it
doesn’t appear to be flexible enough to implement the data structures, described
in this paper, to provide an efficient framework for using the 256 bit vector instruc-
tions.

4 Numerical results

In our numerical experiments we compared two generations of the Intel I7 processor
family, the I7-2700K and I7-950 CPUs. The I7-2700K processor was run at 4.6 GHz,
which is slightly above its 3.9 GHz ”turbo” clockspeed. The times achieved on the
I7-950 processor were scaled to compensate for its slightly lower clockspeed. Our
machines were equipped with 16 gigabyte of main memory. In the experiments we
used our IPM solver, called BPMPD [19].

FIGURE 1: Nonzero structure of problem NUG30

For detailed discussion we selected the well–known test problem nug30 [12]. We
expect that on this problem the new vector instructions are very beneficial because
the Cholesky factorization needed by our interior point implementation is very
dense. The pattern of the problem matrix, and of L+ LT , are shown in Figures 1
and 2, and further details are summarized in Table 1.
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FIGURE 2: Nonzero structure of L + LT on NUG30

TABLE 1: Characteristics of problem NUG30

Number of rows in A 52260
Number of columns in A 379350
Nonzeroes in A 1567800
Nonzeroes in L 566532312
Flops to compute L 10296×109

Dimension of the dense window 24284
Flops in the dense window 4773×109

Flops in the sparse update 14×109

The efficiency of the different steps of the factorization is shown on Table 2. Fig-
ures given include the performance in the dense matrix–matrix multiplications in
steps 3 and 4 of the algorithm, the efficiency in the whole dense Cholesky factor-
ization part, the efficiency in the sparse update in step 5 and the performance of
the whole factorization, including all necessary dense and sparse operations. Since
both processors have 4 cores and hyperthreading capability, we executed our im-
plementation in 1, 2, 4 and 8 threads. The experiments show that the matrix
multiplications in steps 3 and 4 of our implemented algorithm benefit greatly from
the vector and parallel processing, and the efficiency of the processing of the dense
window is only marginally lower. The performance bottleneck of the process is
the sparse update in step 5 where the speedup from multithreading is also lower,
but since this step requires only a small portion of the total operations, it has a
marginal effect on the overall factorization performance on this problem.
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TABLE 2: Performance figures on NUG30 in gigaflops

Thre- Multiplication Dense window Sparse update Factorization
ads I7-950 I7-2700K I7-950 I7-2700K I7-950 I7-2700K I7-950 I7-2700K

1 15.4 33.7 15.1 32.8 0.42 0.54 14.3 29.5
2 30.8 67.2 30.1 65.1 0.75 0.87 28.3 56.9
4 61.2 133.7 57.8 128.5 1.05 1.43 51.9 104.4
8 61.7 134.9 60.2 133.9 1.20 1.63 54.8 110.0

During the solution of this problem, 15 factorizations were computed. The per-
formance of our implementation is compared on the two platforms in Table 3. We
included the execution of the SSE2 code on both processors and the AVX version
on the I7-2700K machine. All versions were run using 8 threads. Similar to the
previous table, we scaled the I7-950 results to compensate for the lower clockspeed.
The results show that the new generation CPU is about 20% faster than the older
one and during the execution of the interior point code the AVX instruction set
provides 70% speedup on this test problem.

TABLE 3: Total solution times and overall performance figures on NUG30

Platform I7-950 I7-2700K/SSE2 I7-2700K/AVX
Time (sec). 2912 sec 2419 sec 1426 sec
Performance 53 Gflops 64 Gflops 108 Gflops
Relative 1 1.2 2.03

Finally, we present performance results of our implementation on other test cases.
We have selected 9 large-scale linear programming problems from public sources
and real-life applications [23, 12, 5, 4, 6]. Table 4 summarizes the characteristics
of the test problems after our default preprocessing [22]. Figures given include the
number of constraints, variables and nonzero elements in the test problems. The
performance of our implementation on our I7-2700K machine is shown in Table 5,
in terms of the number of nonzeroes in the Cholesky factorization (in thousands),
the flops needed to compute one factorization (in billions), the solution time in
seconds, and the sustained performance in gigaflops.

The results show that the implementation performs very well on problems that
have a dense factorization, like nug20 and srd300. On smaller problems (e.g. dbic1)
or on larger problems with sparser factorization (e.g. epa–10) the overhead of the
memory operations limits the performance of the floating-point unit.

5 Conclusions

We investigated how the AVX instruction set can be exploited in interior point
methods. We developed techniques that help to exploit the new instruction set
by decreasing data dependency and lowering the number of memory read opera-
tions. Our investigations showed that the improvements by the AVX instruction
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TABLE 4: Problem statistics after presolve

Problem Rows Colums Nonzeroes
name in A in A in A

dbic1 33687 140358 781946
epa-10 333187 1321864 9525094
gasbaucp 128777 531061 1842988
l1 d10 40 74436 384798 1277562
nug20 15240 72600 304800
pds-100 97543 436003 1000207
rail4284 4176 1090526 11174639
spal-004 10203 321696 46167908
srd300 397580 1223770 58389690

TABLE 5: Performance results on large-scale test problems

Problem Nonzeroes Flop count for Solution time Performance
name in L (×103) one factorization (×106) (in seconds) (in gigaflops)

dbic1 1896 185 3.9 2.0
epa-10 54608 16065 98.2 8.8
gasbaucp 24735 61770 106.2 52.5
l1 d10 40 69010 331572 120.5 60.8
nug20 46702 245169 47.8 85.9
pds-100 29325 41273 49.9 37.2
rail4284 5588 11115 24.6 15.6
spal-004 45269 264112 235.5 44.8
srd300 1143385 26062078 7889.0 109.2

set is mainly limited to the dense computational kernels and there are significant
benefits only when necessary computations can be organized mostly into the dense
kernels. On our test machine our implementation achieved 100 gigaflops sustained
performance on some of the test problems, which shows the computational potential
of the new architecture. We also concluded that the process speeds up well with
multithreading. Although we had access to Intel processors only, we believe that
the presented techniques work well on other platforms because the characteristics
of modern multicore processors are similar.
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