2,663 research outputs found

    Dry electrodes for physiological monitoring

    Get PDF
    Subject preparation and application of sprayed dry electrodes for physiological monitorin

    Visual feedback alters force control and functional activity in the visuomotor network after stroke.

    Get PDF
    Modulating visual feedback may be a viable option to improve motor function after stroke, but the neurophysiological basis for this improvement is not clear. Visual gain can be manipulated by increasing or decreasing the spatial amplitude of an error signal. Here, we combined a unilateral visually guided grip force task with functional MRI to understand how changes in the gain of visual feedback alter brain activity in the chronic phase after stroke. Analyses focused on brain activation when force was produced by the most impaired hand of the stroke group as compared to the non-dominant hand of the control group. Our experiment produced three novel results. First, gain-related improvements in force control were associated with an increase in activity in many regions within the visuomotor network in both the stroke and control groups. These regions include the extrastriate visual cortex, inferior parietal lobule, ventral premotor cortex, cerebellum, and supplementary motor area. Second, the stroke group showed gain-related increases in activity in additional regions of lobules VI and VIIb of the ipsilateral cerebellum. Third, relative to the control group, the stroke group showed increased activity in the ipsilateral primary motor cortex, and activity in this region did not vary as a function of visual feedback gain. The visuomotor network, cerebellum, and ipsilateral primary motor cortex have each been targeted in rehabilitation interventions after stroke. Our observations provide new insight into the role these regions play in processing visual gain during a precisely controlled visuomotor task in the chronic phase after stroke

    L and T Dwarf Models and the L to T Transition

    Full text link
    Using a model for refractory clouds, a novel algorithm for handling them, and the latest gas-phase molecular opacities, we have produced a new series of L and T dwarf spectral and atmosphere models as a function of gravity and metallicity, spanning the \teff range from 2200 K to 700 K. The correspondence with observed spectra and infrared colors for early- and mid-L dwarfs and for mid- to late-T dwarfs is good. We find that the width in infrared color-magnitude diagrams of both the T and L dwarf branches is naturally explained by reasonable variations in gravity and, therefore, that gravity is the "second parameter" of the L/T dwarf sequence. We investigate the dependence of theoretical dwarf spectra and color-magnitude diagrams upon various cloud properties, such as particle size and cloud spatial distribution. In the region of the L→\toT transition, we find that no one cloud-particle-size and gravity combination can be made to fit all the observed data. Furthermore, we note that the new, lower solar oxygen abundances of Allende-Prieto, Lambert, & Asplund (2002) produce better fits to brown dwarf data than do the older values. Finally, we discuss various issues in cloud physics and modeling and speculate on how a better correspondence between theory and observation in the problematic L→\toT transition region might be achieved.Comment: accepted to the Astrophysical Journal, 21 figures (20 in color); spectral models in electronic form available at http://zenith.as.arizona.edu/~burrow

    Filler bar heating due to stepped tiles in the shuttle orbiter thermal protection system

    Get PDF
    An analytical study was performed to investigate the excessive heating in the tile to tile gaps of the Shuttle Orbiter Thermal Protection System due to stepped tiles. The excessive heating was evidence by visible discoloration and charring of the filler bar and strain isolation pad that is used in the attachment of tiles to the aluminum substrate. Two tile locations on the Shuttle orbiter were considered, one on the lower surface of the fuselage and one on the lower surface of the wing. The gap heating analysis involved the calculation of external and internal gas pressures and temperatures, internal mass flow rates, and the transient thermal response of the thermal protection system. The results of the analysis are presented for the fuselage and wing location for several step heights. The results of a study to determine the effectiveness of a half height ceramic fiber gap filler in preventing hot gas flow in the tile gaps are also presented

    Rotation periods of late-type stars in the young open cluster IC 2602

    Get PDF
    We present the results of a monitoring campaign aimed at deriving rotation periods for a representative sample of stars in the young (30 Myr) open cluster IC 2602. Rotation periods were derived for 29 of 33 stars monitored. The periods derived range from 0.2d (one of the shortest known rotation periods of any single open cluster star) to about 10d (which is almost twice as long as the longest period previously known for a cluster of this age). We are able to confirm 8 previously known periods and derive 21 new ones, delineating the long period end of the distribution. Despite our sensitivity to longer periods, we do not detect any variables with periods longer than about 10d. The combination of these data with those for IC 2391, an almost identical cluster, leads to the following conclusions: 1) The fast rotators in a 30 Myr cluster are distributed across the entire 0.5 < B-V < 1.6 color range. 2) 6 stars in our sample are slow rotators, with periods longer than 6d. 3) The amplitude of variability depends on both the color and the period. The dependence on the latter might be important in understanding the selection effects in the currently available rotation period database and in planning future observations. 4) The interpretation of these data in terms of theoretical models of rotating stars suggests both that disk-interaction is the norm rather than the exception in young stars and that disk-locking times range from zero to a few Myr.Comment: 23 pages, 8 figures, accepted for publication in the Astrophysical Journa

    A Spitzer/IRAC Search for Substellar Companions of the Debris Disk Star epsilon Eridani

    Full text link
    We have used the InfraRed Array Camera (IRAC) onboard the Spitzer Space telescope to search for low mass companions of the nearby debris disk star epsilon Eridani. The star was observed in two epochs 39 days apart, with different focal plane rotation to allow the subtraction of the instrumental Point Spread Function, achieving a maximum sensitivity of 0.01 MJy/sr at 3.6 and 4.5 um, and 0.05 MJy/sr at 5.8 and 8.0 um. This sensitivity is not sufficient to directly detect scattered or thermal radiation from the epsilon Eridani debris disk. It is however sufficient to allow the detection of Jovian planets with mass as low as 1 MJ in the IRAC 4.5 um band. In this band, we detected over 460 sources within the 5.70 arcmin field of view of our images. To test if any of these sources could be a low mass companion to epsilon Eridani, we have compared their colors and magnitudes with models and photometry of low mass objects. Of the sources detected in at least two IRAC bands, none fall into the range of mid-IR color and luminosity expected for cool, 1 Gyr substellar and planetary mass companions of epsilon Eridani, as determined by both models and observations of field M, L and T dwarf. We identify three new sources which have detections at 4.5 um only, the lower limit placed on their [3.6]-[4.5] color consistent with models of planetary mass objects. Their nature cannot be established with the currently available data and a new observation at a later epoch will be needed to measure their proper motion, in order to determine if they are physically associated to epsilon Eridani.Comment: 36 pages, to be published on The Astrophysical Journal, vol. 647, August 200

    Patterns of Recovery from Severe Mental Illness: A Pilot Study of Outcomes

    Get PDF
    We performed a pilot study examining the patterns of recovery from severe mental illness in a model integrated service delivery system using measures from the Milestones of Recovery Scale (MORS), a valid and reliable measure of recovery outcomes which ranges from 1 to 8 (8 levels). For purposes of presentation, we constructed an aggregate MORS (6 levels) where the levels are described as follows: (1) extreme risk; (2) unengaged, poorly self-coordinating; (3) engaged, poorly self-coordinating; (4) coping and rehabilitating; (5) early recovery, and (6) self reliant. We analyzed MORS data on individuals followed over time from The Village in Long Beach, California (658 observations). Using Markov Chains, we estimated origin-destination transition probabilities, simulating recovery outcomes for 100 months. Our models suggest that after 12 months only 8% of “extreme risk” clients remain such. Over 40% have moved to “engaged, poorly self-coordinating.” After 2 years, almost half of the initial “extreme Risk” clients are “coping/rehabilitating”, “early recovery” or “Self reliant.” Most gains occur within 2 years

    First Space-Based Microlens Parallax Measurement: Spitzer Observations of OGLE-2005-SMC-001

    Get PDF
    We combine Spitzer and ground-based observations to measure the microlens parallax of OGLE-2005-SMC-001, the first such space-based determination since S. Refsdal proposed the idea in 1966. The parallax measurement yields a projected velocity \tilde v ~ 230 km/s, the typical value expected for halo lenses, but an order of magnitude smaller than would be expected for lenses lying in the Small Magellanic Cloud (SMC) itself. The lens is a weak (i.e., non-caustic-crossing) binary, which complicates the analysis considerably but ultimately contributes additional constraints. Using a test proposed by Assef et al. (2006), which makes use only of kinematic information about different populations but does not make any assumptions about their respective mass functions, we find that the likelihood ratio is L_halo/L_SMC = 20. Hence, halo lenses are strongly favored but SMC lenses are not definitively ruled out. Similar Spitzer observations of additional lenses toward the Magellanic Clouds would clarify the nature of the lens population. The Space Interferometry Mission could make even more constraining measurements.Comment: ApJ, in press. Text and figures are updated to match the journal versio

    Submillimeter Wave Astronomy Satellite observations of comet 9P/Tempel 1 and Deep Impact

    Get PDF
    On 4 July 2005 at 5:52 UT the Deep Impact mission successfully completed its goal to hit the nucleus of 9P/Tempel 1 with an impactor, forming a crater on the nucleus and ejecting material into the coma of the comet. NASA's Submillimeter Wave Astronomy Satellite (SWAS) observed the 1(10)-1(01) ortho-water ground-state rotational transition in comet 9P/Tempel 1 before, during, and after the impact. No excess emission from the impact was detected by SWAS and we derive an upper limit of 1.8e7 kg on the water ice evaporated by the impact. However, the water production rate of the comet showed large natural variations of more than a factor of three during the weeks before and after the impact. Episodes of increased activity with Q(H2O)~1e28 molecule/s alternated with periods with low outgassing (Q(H2O)<~5e27 molecule/s). We estimate that 9P/Tempel 1 vaporized a total of N~4.5e34 water molecules (~1.3e9 kg) during June-September 2005. Our observations indicate that only a small fraction of the nucleus of Tempel 1 appears to be covered with active areas. Water vapor is expected to emanate predominantly from topographic features periodically facing the Sun as the comet rotates. We calculate that appreciable asymmetries of these features could lead to a spin-down or spin-up of the nucleus at observable rates.Comment: 38 pages, 2 tables, 7 figures; Icarus, in pres

    Will the recently approved LARES mission be able to measure the Lense-Thirring effect at 1%?

    Full text link
    After the approval by the Italian Space Agency of the LARES satellite, which should be launched at the end of 2009 with a VEGA rocket and whose claimed goal is a about 1% measurement of the general relativistic gravitomagnetic Lense-Thirring effect in the gravitational field of the spinning Earth, it is of the utmost importance to reliably assess the total realistic accuracy that can be reached by such a mission. The observable is a linear combination of the nodes of the existing LAGEOS and LAGEOS II satellites and of LARES able to cancel out the impact of the first two even zonal harmonic coefficients of the multipolar expansion of the classical part of the terrestrial gravitational potential representing a major source of systematic error. While LAGEOS and LAGEOS II fly at altitudes of about 6000 km, LARES will be placed at an altitude of 1450 km. Thus, it will be sensitive to much more even zonals than LAGEOS and LAGEOS II. Their corrupting impact \delta\mu has been evaluated by using the standard Kaula's approach up to degree L=70 along with the sigmas of the covariance matrices of eight different global gravity solutions (EIGEN-GRACE02S, EIGEN-CG03C, GGM02S, GGM03S, JEM01-RL03B, ITG-Grace02s, ITG-Grace03, EGM2008) obtained by five institutions (GFZ, CSR, JPL, IGG, NGA) with different techniques from long data sets of the dedicated GRACE mission. It turns out \delta\mu about 100-1000% of the Lense-Thirring effect. An improvement of 2-3 orders of magnitude in the determination of the high degree even zonals would be required to constrain the bias to about 1-10%.Comment: Latex, 15 pages, 1 table, no figures. Final version matching the published one in General Relativity and Gravitation (GRG
    • 

    corecore