19 research outputs found

    Drosophila CG3303 is an essential endoribonuclease linked to TDP-43-mediated neurodegeneration

    Get PDF
    Endoribonucleases participate in almost every step of eukaryotic RNA metabolism, acting either as degradative or biosynthetic enzymes. We previously identified the founding member of the Eukaryotic EndoU ribonuclease family, whose components display unique biochemical features and are flexibly involved in important biological processes, such as ribosome biogenesis, tumorigenesis and viral replication. Here we report the discovery of the CG3303 gene product, which we named DendoU, as a novel family member in Drosophila. Functional characterisation revealed that DendoU is essential for Drosophila viability and nervous system activity. Pan-neuronal silencing of dendoU resulted in fly immature phenotypes, highly reduced lifespan and dramatic motor performance defects. Neuron-subtype selective silencing showed that DendoU is particularly important in cholinergic circuits. At the molecular level, we unveiled that DendoU is a positive regulator of the neurodegeneration-associated protein dTDP-43, whose downregulation recapitulates the ensemble of dendoU-dependent phenotypes. This interdisciplinary work, which comprehends in silico, in vitro and in vivo studies, unveils a relevant role for DendoU in Drosophila nervous system physio-pathology and highlights that DendoU-mediated neurotoxicity is, at least in part, contributed by dTDP-43 loss-of-function

    Arabidopsis thaliana sirtuins control proliferation and glutamate dehydrogenase activity

    Get PDF
    Sirtuins are part of a gene family of NAD-dependent deacylases that act on histone and non-histone proteins and control a variety of activities in all living organisms. Their roles are mainly related to energy metabolism and include lifetime regulation, DNA repair, stress resistance, and proliferation. A large amount of knowledge concerning animal sirtuins is available, but data about their plant counterparts are scarce. Plants possess few sirtuins that have, like in animals, a recognized role in stress defense and metabolism regulation. However, engagement in proliferation control, which has been demonstrated for mammalian sirtuins, has not been reported for plant sirtuins so far. In this work, srt1 and srt2 Arabidopsis mutant seedlings have been used to evaluate in vivo the role of sirtuins in cell proliferation and regulation of glutamate dehydrogenase, an enzyme demonstrated to be involved in the control of cell cycle in SIRT4-defective human cells. Moreover, bioinformatic analyses have been performed to elucidate sequence, structure, and function relationships between Arabidopsis sirtuins and between each of them and the closest mammalian homolog. We found that cell proliferation and GDH activity are higher in mutant seedlings, suggesting that both sirtuins exert a physiological inhibitory role in these processes. In addition, mutant seedlings show plant growth and root system improvement, in line with metabolic data. Our data also indicate that utilization of an easy to manipulate organism, such as Arabidopsis plant, can help to shed light on the molecular mechanisms underlying the function of genes present in interkingdom species

    The isolated carboxy-terminal domain of human mitochondrial leucyl-tRNA synthetase rescues the pathological phenotype of mitochondrial tRNA mutations in human cells.

    Get PDF
    Mitochondrial (mt) diseases are multisystem disorders due to mutations in nuclear or mtDNA genes. Among the latter, more than 50% are located in transfer RNA (tRNA) genes and are responsible for a wide range of syndromes, for which no effective treatment is available at present. We show that three human mt aminoacyl-tRNA syntethases, namely leucyl-, valyl-, and isoleucyl-tRNA synthetase are able to improve both viability and bioenergetic proficiency of human transmitochondrial cybrid cells carrying pathogenic mutations in the mt-tRNA(Ile) gene. Importantly, we further demonstrate that the carboxy-terminal domain of human mt leucyl-tRNA synthetase is both necessary and sufficient to improve the pathologic phenotype associated either with these "mild" mutations or with the "severe" m.3243A>G mutation in the mt-tRNA(L)(eu(UUR)) gene. Furthermore, we provide evidence that this small, non-catalytic domain is able to directly and specifically interact in vitro with human mt-tRNA(Leu(UUR)) with high affinity and stability and, with lower affinity, with mt-tRNA(Ile). Taken together, our results sustain the hypothesis that the carboxy-terminal domain of human mt leucyl-tRNA synthetase can be used to correct mt dysfunctions caused by mt-tRNA mutations

    PDBe-KB: a community-driven resource for structural and functional annotations.

    Get PDF
    The Protein Data Bank in Europe-Knowledge Base (PDBe-KB, https://pdbe-kb.org) is a community-driven, collaborative resource for literature-derived, manually curated and computationally predicted structural and functional annotations of macromolecular structure data, contained in the Protein Data Bank (PDB). The goal of PDBe-KB is two-fold: (i) to increase the visibility and reduce the fragmentation of annotations contributed by specialist data resources, and to make these data more findable, accessible, interoperable and reusable (FAIR) and (ii) to place macromolecular structure data in their biological context, thus facilitating their use by the broader scientific community in fundamental and applied research. Here, we describe the guidelines of this collaborative effort, the current status of contributed data, and the PDBe-KB infrastructure, which includes the data exchange format, the deposition system for added value annotations, the distributable database containing the assembled data, and programmatic access endpoints. We also describe a series of novel web-pages-the PDBe-KB aggregated views of structure data-which combine information on macromolecular structures from many PDB entries. We have recently released the first set of pages in this series, which provide an overview of available structural and functional information for a protein of interest, referenced by a UniProtKB accession

    The yeast model suggests the use of short peptides derived from mt LeuRS for the therapy of diseases due to mutations in several mt tRNAs

    Get PDF
    We have previously established a yeastmodel of mitochondrial (mt) diseases. We showed that defective respiratory phenotypes due to point-mutations inmt tRNALeu(UUR), tRNAIle and tRNAVal could be relieved by overexpression of both cognate and non-cognate nuclearly encodedmt aminoacyl-tRNA synthetases (aaRS) LeuRS, IleRS and ValRS. More recently, we showed that the isolated carboxy-terminal domain (Cterm) of yeast mt LeuRS, and even short peptides derived from the human Cterm, have the same suppressing abilities as the whole enzymes. In this work, we extend these results by investigating the activity of a number of mt aaRS from either class I or II towards a panel ofmt tRNAs. The Ctermof both human and yeast mt LeuRS has the same spectrumof activity as mt aaRS belonging to class I and subclass a,which is the most extensive among the whole enzymes. Yeast Cterm is demonstrated to be endowed with mt targeting activity. Importantly, peptide fragments β30_31 and β32_33, derived fromthe human Cterm, have even higher efficiency as well as wider spectrum of activity, thus opening new avenues for therapeutic intervention. Bind-shifting experiments show that the β30_31 peptide directly interacts with human mt tRNALeu(UUR) and tRNAIle, suggesting that the rescuing activity of isolated peptide fragments is mediated by a chaperone-like mechanism. Wide-range suppression appears to be idiosyncratic of LeuRS and its fragments, since it is not shared by Cterminal regions derived from humanmt IleRS or ValRS,which are expected to have very different structures and interactions with tRNAs

    Structural and functional role of bases 32 and 33 in the anticodon loop of yeast mitochondrial tRNAIle

    No full text
    Previous work has demonstrated the usefulness of the yeast model to investigate the molecular mechanisms underlying defects due to base substitutions in mitochondrial tRNA genes, and to identify suppressing molecules endowed with potential clinical relevance. The present paper extends these investigations to two human equivalent yeast mutations located at positions 32 and 33 in the anticodon loop of tRNA(Ile). Notwithstanding the proximity of the two T>C base substitutions, the effects of these mutations have been found to be quite different in yeast, as they are in human. The T32C substitution has a very severe effect in yeast, consisting in a complete inhibition of growth on nonfermentable substrates. Conversely, respiratory defects caused by the T33C mutation could only be observed in a defined genetic context. Analyses of available sequences and selected tRNA three-dimensional structures were performed to provide explanations for the different behavior of these adjacent mutations. Examination of the effects of previously identified suppressors demonstrated that overexpression of the TUF1 gene did not rescue the defective phenotypes determined by either mutation, possibly as a consequence of the lack of interactions between EF-Tu and the tRNA anticodon arm in known structures. On the contrary, both the cognate IleRS and the noncognate LeuRS and ValRS are endowed with suppressing activities toward both mutations. This allows us to extend to the tRNA(Ile) mutants the cross-suppression activity of aminoacyl-tRNA synthetases previously demonstrated for tRNA(Leu) and tRNA(Val) mutants

    Crystal structure of Schistosoma mansoni Peroxiredoxin I: insights into a general mechanism of assembly of stress-regulated chaperones

    No full text
    2-Cys peroxiredoxins (Prx) are thought to play two alternative roles in cell's physiology: under low oxidative stress they are thioredoxin-dependent peroxidases, whereas upon exposure to high concentrations of H2O2, they change their oligomerization state from low molecular weight form (LMW) to high molecular weight (HMW) ATP-independent chaperones. Neither the precise structure of HMW complexes nor the binding site for unfolded proteins has been yet identified. In this poster we present the 3D crystal structures of decameric, LMW form, of PrxI from Schistosoma mansoni, obtained under reducing conditions and neutral pH, and of its HMW form, obtained under non-reducing conditions and acidic pH. The HMW is constituted by two stacked decamers. Size exclusion chromatography and functional experiments confirmed that the former has peroxidase activity whereas the latter is the putative holdase. Analysing the structures and using computational methods, we were able to explain the stacking of decamers (and thereby the switch between LMW and HMW) in terms of a quaternary change induced by tertiary structural variations occurring at the dimer-dimer interface. We suggest that environmental redox information is transmitted by hierarchical structural transitions that change the function of Prx through overoxidation of the sulphur atom of Cysp and unwinding of the first turn of the a5 helix. This event induces C-terminal arm unfolding and the concomitant protrusion of a loop towards the nearby dimer, triggering the quaternary structural change at the basis of the formation of the HMW form. Our structures provide also a model by which members of the Prx protein family form long filaments of stacked rings in vivo and enables us to propose how the HMW forms acquire the capability to bind non-native proteins
    corecore