7 research outputs found

    Activating Killer Immunoglobulin Receptors and HLA-C: A successful combination providing HIV-1 control

    No full text
    Several studies demonstrated a relevant role of polymorphisms located within the HLA-B and -C loci and the Killer Immunoglobulin Receptors (KIRs) 3DL1 and 3DS1 in controlling HIV-1 replication. KIRs are regulatory receptors expressed at the surface of NK and CD8+ T-cells that specifically bind HLA-A and -B alleles belonging to the Bw4 supratype and all the -C alleles expressing the C1 or C2 supratype. We here disclose a novel signature associated with the Elite Controller but not with the long-term nonprogressor status concerning 2DS activating KIRs and HLA-C2 alleles insensitive to miRNA148a regulation. Overall, our findings support a crucial role of NK cells in the control of HIV-1 viremia

    The KMT2A recombinome of acute leukemias in 2023

    Get PDF
    Chromosomal rearrangements of the human KMT2A/MLL gene are associated with de novo as well as therapy-induced infant, pediatric, and adult acute leukemias. Here, we present the data obtained from 3401 acute leukemia patients that have been analyzed between 2003 and 2022. Genomic breakpoints within the KMT2A gene and the involved translocation partner genes (TPGs) and KMT2A-partial tandem duplications (PTDs) were determined. Including the published data from the literature, a total of 107 in-frame KMT2A gene fusions have been identified so far. Further 16 rearrangements were out-of-frame fusions, 18 patients had no partner gene fused to 5'-KMT2A, two patients had a 5'-KMT2A deletion, and one ETV6::RUNX1 patient had an KMT2A insertion at the breakpoint. The seven most frequent TPGs and PTDs account for more than 90% of all recombinations of the KMT2A, 37 occur recurrently and 63 were identified so far only once. This study provides a comprehensive analysis of the KMT2A recombinome in acute leukemia patients. Besides the scientific gain of information, genomic breakpoint sequences of these patients were used to monitor minimal residual disease (MRD). Thus, this work may be directly translated from the bench to the bedside of patients and meet the clinical needs to improve patient survival
    corecore