7 research outputs found

    6G Opportunities Arising from Internet of Things Use Cases: A Review Paper

    Get PDF
    The race for the 6th generation of wireless networks (6G) has begun. Researchers around the world have started to explore the best solutions for the challenges that the previous generations have experienced. To provide the readers with a clear map of the current developments, several review papers shared their vision and critically evaluated the state of the art. However, most of the work is based on general observations and the big picture vision, and lack the practical implementation challenges of the Internet of Things (IoT) use cases. This paper takes a novel approach in the review, as we present a sample of IoT use cases that are representative of a wide variety of its implementations. The chosen use cases are from the most research-active sectors that can benefit from 6G and its enabling technologies. These sectors are healthcare, smart grid, transport, and Industry 4.0. Additionally, we identified some of the practical challenges and the lessons learned in the implementation of these use cases. The review highlights the casesā€™ main requirements and how they overlap with the key drivers for the future generation of wireless networks

    Fabrication and Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays

    Get PDF
    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (~75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron pitch and smaller arrays of devices up to 600 micron pitch. We discuss the fabrication techniques used for each type of array focusing on unique aspects where processes vary to achieve the particular designs and required device parameters. For example, we evaluate various material combinations in the production of the thick metal heatsinking, including superconducting and normal metal adhesion layers. We also evaluate the impact of added heatsinking on the membrane isolated devices as it relates to basic device parameters. Arrays can be characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Device parameters can be measured simultaneously so that environmental events such as thermal drifts or changes in magnetic fields can be controlled. For some designs, we will evaluate the uniformity of parameters impacting the intrinsic performance of the microcalorimeters under bias in these arrays and assess the level of thermal crosstalk

    Sonocrystallization of Interesterified Fats with 20 and 30% C16:0 at sn-2 Position

    No full text
    The objective of this study was to induce crystallization in enzymatically interesterified fats (IE) with 20 and 30% palmitic acid at the sn-2 position using high intensity ultrasound (HIU). The physical blends (PB) used to prepare these two IE were consisted of tripalmitin and high oleic sunflower oil and contained 13.2 and 27.1% tripalmitin, respectively. Crystallization behavior of IE was compared with PB at supercoolings of 9, 6 and 3 Ā°C. Results show that the melting point, SFC, and crystallization rate of PB were higher than IE and were driven mainly by tripalmitin content. HIU induced crystallization and generated small crystals in the IE samples. At 9 Ā°C supercooling, sonication did not increase the viscosity of IE C16:0 20%, while that of the IE C16:0 30% increased significantly from 192.4 Ā± 118.9 to 3297.7 Ā± 1368.6 PaĀ·s. The elastic modulus (Gā€™) for IE C16:0 30% increased from 12521 Ā± 2739.8 to 75076.7 Ā± 18259 Pa upon sonication at 9 Ā°C supercooling, while the Gā€™ of the IE C16:0 20% did not increase. Similar behavior was observed for the other supercoolings tested. This research suggests that HIU can improve the functional properties of IE with low content of C16:0 creating more viscous and elastic materials. These fats with low C16:0 content and improved functional properties could be used as trans-free fat alternatives
    corecore