145 research outputs found

    Time-resolved optical studies, heat dissipation and melting of Ag and Au nanoparticle systems and arrays

    Get PDF
    Transient absorption spectroscopy has been extensively used in recent years to examine the temporal response of isolated nanoparticles (NPs) to the absorption of light [1]. These studies are largely based on the use of the surface plasmon resonance (SPR) to monitor characteristics of the NP such as electronic and lattice temperature, shape and morphology as a function of time. In the case of extended Au/Ag NP structures the plasmon resonance is strongly distorted due to the inter-particle coupling effects. For example, we have observed this effect in Rhodamine dye functionalized Au nanoparticles which undergo self-assembly to form nanostructures due to the interactions between the dye molecules attached to the surfaces of the nanoparticles. Indeed the SPR splits into two with one resonance remaining in the vicinity of that of the isolated AuNPs and is generally called the transverse SPR while a second resonance due to an extended excitation spanning across multiple particles appears to the lower energies. The precise spectral energy and shape of the extended plasmon resonance depends on the inter-particle distance, the particle disposition and the number of particles involved. When the plasmon band or interband spectral region of the NP is excited by an intense pulse the photon energy absorbed by the electrons is transferred to the lattice of the NP as heat through electron-phonon coupling. Depending on the intensity of the light pulse and thus the initial electron temperature a number of outcomes are possible. The first aim of this work is to use low intensity pump pulses to study the wavelength dependence of the sub 10 ps dynamics which reflects the electron-photon scattering within the nanoparticle structure. On the other hand, the interaction of more intense light with the NPs can modify the morphology of NP systems, for example by reshaping gold nanorods into nanospheres or, in general, mediate the synthesis of metallic nanostructures. At medium intensities the initial temperature is sufficient to induce melting of the NPs which can lead to morphological changes of the NP structure. Higher intensities can cause other effects such as photofragmentation of the NPs, release of stabiliser molecules from the surface of the NPs or even Coulomb explosion due to multiple ionisation events. The second aim of this work is to concentrate on the effects of medium intensity laser excitation of a self-assembled Au/Ag NP systems. The NP system is excited by a femtosecond laser pulse of different wavelengths allowing selective deposition of energy and the subsequent heat dissipation through phonon-phonon coupling and morphological changes are monitored in time by recording transient absorption spectra in the visible range. This wavelength range makes it possible to follow the phonon-phonon coupling effects on the recovery of the bleaching of both the transverse and extended plasmon resonances of the NP system. As the intensity of the pump pulse is increased it can be seen that the NPs are no longer able to dissipate all of the heat before arrival of subsequent laser pulses thus leading to melting of the NP structure and strong changes in the plasmon response of the system. The overall aim of this study is to fully understand the delocalized electron-phonon coupling in the extended plasmon region of the NP structures and to use this knowledge to control the melting in nanostructures. The methods developed can be useful for plasmon mediated nano-engineerin

    Photo dissociation dynamics and UV spectroscopy of ozone

    Get PDF

    A study of the norcaradiene-cycloheptatriene equilibrium in a series of azulenones by NMR spectroscopy; the impact of substitution on the position of equilibrium

    Get PDF
    A systematic investigation of the influence of substitution at positions C-2 and C-3 on the azulenone skeleton, based on NMR characterisation, is discussed with particular focus on the impact of the steric and electronic characteristics of substituents on the position of the norcaradiene-cycloheptatriene (NCD-CHT) equilibrium. Variable temperature (VT) NMR studies, undertaken to enable the resolution of signals for the equilibrating valence tautomers revealed, in addition, interesting shifts in the equilibrium

    Emissions and topographic effects on column CO_2 (XCO_2) variations, with a focus on the Southern California Megacity

    Get PDF
    Within the California South Coast Air Basin (SoCAB), X_(CO)_2 varies significantly due to atmospheric dynamics and the nonuniform distribution of sources. X_(CO)_2 measurements within the basin have seasonal variation compared to the “background” due primarily to dynamics, or the origins of air masses coming into the basin. We observe basin-background differences that are in close agreement for three observing systems: Total Carbon Column Observing Network (TCCON) 2.3 ± 1.2 ppm, Orbiting Carbon Observatory-2 (OCO-2) 2.4 ± 1.5 ppm, and Greenhouse gases Observing Satellite 2.4 ± 1.6 ppm (errors are 1σ). We further observe persistent significant differences (∼0.9 ppm) in X_(CO)_2 between two TCCON sites located only 9 km apart within the SoCAB. We estimate that 20% (±1σ confidence interval (CI): 0%, 58%) of the variance is explained by a difference in elevation using a full physics and emissions model and 36% (±1σ CI: 10%, 101%) using a simple, fixed mixed layer model. This effect arises in the presence of a sharp gradient in any species (here we focus on CO_2) between the mixed layer (ML) and free troposphere. Column differences between nearby locations arise when the change in elevation is greater than the change in ML height. This affects the fraction of atmosphere that is in the ML above each site. We show that such topographic effects produce significant variation in X_(CO)_2 across the SoCAB as well

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Environmental variables affecting an arid coastal nebkha

    Get PDF
    Foredunes in arid coastal dune systems comprise nebkhas, which originate by interactions between vegetation and aeolian sedimentation. While continuous foredunes in temperate climates have been widely studied, knowledge of interactions between biotic and abiotic drivers in foredunes formed by nebkha is still scarce. With the aim of exploring variables affecting arid foredunes, a range of morphological, sedimentological, and vegetation characteristics were measured on a single nebkha formed by a Traganum moquinii plant located in the foredune of Caleta de Famara beach (Lanzarote, Canary Islands). Variables were sampled at 120 plots in a 0.5 × 0.5 m square grid. A two-step process using multiple linear regression (MLR) analyses was developed to characterize 1) the influence that morphological variables and distance from the sea have on plant and sediment patterns on nebkha, and 2) the influence of plants on depositional sediment characteristics. Results indicate close relationships between distance from the sea, plant coverage, and sediment patterns. Empirical results were used to develop a conceptual model that explains the spatial distribution of bio- and geo-morphological characteristics of an arid nebkha foredune.Spanish Ministry of Economy, Industry and Competitiveness contract (BES-2017-082733

    Irish cardiac society - Proceedings of annual general meeting held 20th & 21st November 1992 in Dublin Castle

    Get PDF
    corecore