1,220 research outputs found

    Year of Expanding into Circulating Biomarkers

    Get PDF
    This editorial article summarizes the achievements and current challenges for the Journal of Circulating Biomarkers (JCB) regarding a more strategic approach to branding and attracting a high quality variety of articles. More emphasis is placed on fostering engagement with academic and industry sources operating at the cutting-edge of translational technologies applied to the field of circulating biomarkers (interface between extracellular vesicles including exosomes and microvesicles, circulating tumour cells, cell-free circulating DNA and circulating protein markers) and with those in the investment arena seeking and providing private funding for this area of research

    A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies

    Get PDF
    Over the last decade, gene expression microarrays have had a profound impact on biomedical research. The diversity of platforms and analytical methods available to researchers have made the comparison of data from multiple platforms challenging. In this study, we describe a framework for comparisons across platforms and laboratories. We have attempted to include nearly all the available commercial and 'in-house' platforms. Using probe sequences matched at the exon level improved consistency of measurements across the different microarray platforms compared to annotation-based matches. Generally, consistency was good for highly expressed genes, and variable for genes with lower expression values as confirmed by quantitative real-time (QRT)-PCR. Concordance of measurements was higher between laboratories on the same platform than across platforms. We demonstrate that, after stringent preprocessing, commercial arrays were more consistent than in-house arrays, and by most measures, one-dye platforms were more consistent than two-dye platforms

    Impact of Biofluid Viscosity on Size and Sedimentation Efficiency of the Isolated Microvesicles

    Get PDF
    Microvesicles are nano-sized lipid vesicles released by all cells in vivo and in vitro. They are released physiologically under normal conditions but their rate of release is higher under pathological conditions such as tumors. Once released they end up in the systemic circulation and have been found and characterized in all biofluids such as plasma, serum, cerebrospinal fluid, breast milk, ascites, and urine. Microvesicles represent the status of the donor cell they are released from and they are currently under intense investigation as a potential source for disease biomarkers. Currently, the “gold standard” for isolating microvesicles is ultracentrifugation, although alternative techniques such as affinity purification have been explored. Viscosity is the resistance of a fluid to a deforming force by either shear or tensile stress. The different chemical and molecular compositions of biofluids have an effect on its viscosity and this could affect movements of the particles inside the fluid. In this manuscript we addressed the issue of whether viscosity has an effect on sedimentation efficiency of microvesicles using ultracentrifugation. We used different biofluids and spiked them with polystyrene beads and assessed their recovery using the Nanoparticle Tracking Analysis. We demonstrate that MVs recovery inversely correlates with viscosity and as a result, sample dilutions should be considered prior to ultracentrifugation when processing any biofluids

    Turning the Page to Year 2016

    Get PDF
    As we conclude another year (2015), Volume 2 completed, we are pleased with the number of quality published manuscripts. We are also excited to announce Nanobiomedicine has been indexed in DOAJ (Directory of Open Access Journals) (https://doaj.org/toc/1849-5435)! This was in part attributed with the help of our Special Editor, Dr. Barbara Smith, who spearheaded manuscripts highlighting innovative results that impacted the global health spectrum implementing new methods for disease diagnosis, including technological and product development for enhanced point-of-care and personalized health care. Dr. Smith undertook this endeavor as she transitioned from a post-doc position (from George Whitesides’ lab at Harvard University) to a faculty position at Arizona State, getting acclimated and setting up her laboratory. We want to thank Dr. Smith for her time and commitment to our journal. It’s worth noting, we had a high number of submissions throughout the year, however, the expectations of the manuscripts not published fell short due to our review process, indicating the emphasis of publishing high quality manuscripts. We thank all the reviewers for their time and feedback

    Short Course in Extracellular Vesicles – The Transition from Tissue to Liquid Biopsies

    Get PDF
    Extracellular vesicles (EVs), including exosomes and microvesicles, carry a variety of bio-macromolecules, including mRNA, microRNA, other non-coding RNAs, proteins and lipids. EVs have emerged as a promising, minimally invasive (liquid biopsies) and novel source of material for molecular diagnostics, and may provide a surrogate to tissue biopsy-based biomarkers for a variety of diseases. Although EVs can be easily identified and collected from biological fluids using commercial kits, further research and proper validation is needed in order for them to be useful in the clinical setting. Currently, several EV-based research and diagnostic companies have developed research-based kits and are in the process of working with clinical laboratories to develop and validate EV-based assays for a variety of diseases. The successful clinical application of EV-based diagnostic assays will require close collaboration between industry, academia, regulatory agencies and access to patient samples. We expect that international, integrative and interdisciplinary translational research teams, along with the emergence of FDA-approved platforms, will set the framework for EV-based diagnostics. We recognize that the EV field offers new promise for personalized/precision medicine and targeted treatment in a variety of diseases. A short course was held as a four-session webinar series in September and October 2014, presented by pioneers and experts in the EV domain, covering a broad range of topics from an overview of the field to its applications, and the current state and challenges of the commercialization of EVs for research and an introduction to the clinic. It was concluded with a panel discussion on the regulatory aspects and funding opportunities in this field. A summary of the short course is presented as a meeting dispatch

    Short Course in the Microbiome

    Get PDF
    Over the past decade, it has become evident that the microbiome is an important environmental factor that affects many physiological processes, such as cell proliferation and differentiation, behaviour, immune function and metabolism. More importantly, it may contribute to a wide variety of diseases, including cancer, inflammatory diseases, metabolic diseases and responses to pathogens. We expect that international, integrative and interdisciplinary translational research teams, along with the emergence of FDA-approved platforms, will set the framework for microbiome-based therapeutics and diagnostics. We recognize that the microbiome ecosystem offers new promise for personalized/precision medicine and targeted treatment for a variety of diseases. The short course was held as a four-session webinar series in April 2015, taught by pioneers and experts in the microbiome ecosystem, covering a broad range of topics from the healthy microbiome to the effects of an altered microbiome from neonates to adults and the long term effects as it is related to disease, from asthma to cancer. We have learned to appreciate how beneficial our microbes are in breaking down our food, fighting off infections and nurturing our immune system, and this information provides us with ideas as to how we can manipulate our microbiome to prevent certain diseases. However, given the variety of applications, there are scientific challenges, though there are very promising areas in reference to the clinical benefits of understanding more about our microbiome, whether in our gut or on our skin: the outlook is bright. A summary of the short course is presented as a meeting dispatch

    Comparison of hybridization-based and sequencing-based gene expression technologies on biological replicates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput systems for gene expression profiling have been developed and have matured rapidly through the past decade. Broadly, these can be divided into two categories: hybridization-based and sequencing-based approaches. With data from different technologies being accumulated, concerns and challenges are raised about the level of agreement across technologies. As part of an ongoing large-scale cross-platform data comparison framework, we report here a comparison based on identical samples between one-dye DNA microarray platforms and MPSS (Massively Parallel Signature Sequencing).</p> <p>Results</p> <p>The DNA microarray platforms generally provided highly correlated data, while moderate correlations between microarrays and MPSS were obtained. Disagreements between the two types of technologies can be attributed to limitations inherent to both technologies. The variation found between pooled biological replicates underlines the importance of exercising caution in identification of differential expression, especially for the purposes of biomarker discovery.</p> <p>Conclusion</p> <p>Based on different principles, hybridization-based and sequencing-based technologies should be considered complementary to each other, rather than competitive alternatives for measuring gene expression, and currently, both are important tools for transcriptome profiling.</p
    corecore