3,091 research outputs found

    Altered differential control of sympathetic outflow following sedentary conditions: Role of subregional neuroplasticity in the RVLM

    Get PDF
    Despite the classically held belief of an “all-or-none” activation of the sympathetic nervous system, differential responses in sympathetic nerve activity (SNA) can occur acutely at varying magnitudes and in opposing directions. Sympathetic nerves also appear to contribute differentially to various disease states including hypertension and heart failure. Previously we have reported that sedentary conditions enhanced responses of splanchnic SNA (SSNA) but not lumbar SNA (LSNA) to activation of the rostral ventrolateral medulla (RVLM) in rats. Bulbospinal RVLM neurons from sedentary rats also exhibit increased dendritic branching in rostral regions of the RVLM. We hypothesized that regionally specific structural neuroplasticity would manifest as enhanced SSNA but not LSNA following activation of the rostral RVLM. To test this hypothesis, groups of physically active (10–12 weeks on running wheels) or sedentary, male Sprague-Dawley rats were instrumented to record mean arterial pressure, LSNA and SSNA under Inactin anesthesia and during microinjections of glutamate (30 nl, 10 mM) into multiple sites within the RVLM. Sedentary conditions enhanced SSNA but not LSNA responses and SSNA responses were enhanced at more central and rostral sites. Results suggest that enhanced SSNA responses in rostral RVLM coincide with enhanced dendritic branching in rostral RVLM observed previously. Identifying structural and functional neuroplasticity in specific populations of RVLM neurons may help identify new treatments for cardiovascular diseases, known to be more prevalent in sedentary individuals

    Plant species determine tidal wetland methane response to sea level rise

    Get PDF
    Blue carbon (C) ecosystems are among the most effective C sinks of the biosphere, but methane (CH4) emissions can offset their climate cooling effect. Drivers of CH4 emissions from blue C ecosystems and effects of global change are poorly understood. Here we test for the effects of sea level rise (SLR) and its interactions with elevated atmospheric CO2, eutrophication, and plant community composition on CH4 emissions from an estuarine tidal wetland. Changes in CH4 emissions with SLR are primarily mediated by shifts in plant community composition and associated plant traits that determine both the direction and magnitude of SLR effects on CH4 emissions. We furthermore show strong stimulation of CH4 emissions by elevated atmospheric CO2, whereas effects of eutrophication are not significant. Overall, our findings demonstrate a high sensitivity of CH4 emissions to global change with important implications for modeling greenhouse-gas dynamics of blue C ecosystems

    Plant species determine tidal wetland methane response to sea level rise

    Get PDF
    Blue carbon (C) ecosystems are among the most effective C sinks of the biosphere, but methane (CH4) emissions can offset their climate cooling effect. Drivers of CH4 emissions from blue C ecosystems and effects of global change are poorly understood. Here we test for the effects of sea level rise (SLR) and its interactions with elevated atmospheric CO2, eutrophication, and plant community composition on CH4 emissions from an estuarine tidal wetland. Changes in CH4 emissions with SLR are primarily mediated by shifts in plant community composition and associated plant traits that determine both the direction and magnitude of SLR effects on CH4 emissions. We furthermore show strong stimulation of CH4 emissions by elevated atmospheric CO2, whereas effects of eutrophication are not significant. Overall, our findings demonstrate a high sensitivity of CH4 emissions to global change with important implications for modeling greenhouse-gas dynamics of blue C ecosystems

    A Model For the Formation of High Density Clumps in Proto-Planetary Nebulae

    Full text link
    The detection of NaCl at large radii in the Egg Nebula, CRL 2688, requires densities of 10^7 - 10^8 cm^-3 in a thick shell of r ~ a few X 10^17 cm. To explain these results, a mechanism is needed for producing high densities at a considerable distance from the central star. In two dimensional simulations of the interaction of the fast wind with an ambient medium, the material becomes thermally unstable. The resulting clumps can achieve the requisite conditions for NaCl excitation. We present 2D models with simple physics as proof-of-principle calculations to show that the clumping behavior is robust. Clumping is a natural outcome of cooling in the colliding wind model and comparable to that inferred from observations.Comment: 12 pages, 3 figures. Accepted for publication in the Astrophysical Journal Letter

    In vitro effects of hyaluronic acid on human periodontal ligament cells

    Get PDF
    Background: Hyaluronic acid (HA) has been reported to have a positive effect on periodontal wound healing following nonsurgical and surgical therapy. However, to date, a few basic in vitro studies have been reported to investigating the potential of HA on human periodontal ligament (PDL) cell regeneration. Therefore, the aim of this study was to investigate the effect of HA on PDL cell compatibility, proliferation, and differentiation in vitro. Methods: Either non-cross-linked (HA_ncl) or cross-linked (HA_cl) HA was investigated. Human PDL cells were seeded in 7 conditions as follows (1) Control tissue culture plastic (TCP) (2) dilution of HA_ncl (1:100), (3) dilution of HA_ncl (1:10), 4) HA_ncl directly coated onto TCP, (5) dilution of HA_cl (1:100), 6) dilution of HA_cl (1:10) and (7) HA_cl directly coated onto TCP. Samples were then investigated for cell viability using a live/dead assay, an inflammatory reaction using real-time PCR and ELISA for MMP2, IL-1 and cell proliferation via an MTS assay. Furthermore, the osteogenic potential of PDL cells was assessed by alkaline phosphatase(ALP) activity, collagen1(COL1) and osteocalcin(OCN) immunostaining, alizarin red staining, and real-time PCR for genes encoding Runx2, COL1, ALP, and OCN. Results: Both HA_ncl and HA_cl showed high PDL cell viability (greater than 90%) irrespective of the culturing conditions. Furthermore, no significant difference in both mRNA and protein levels of proinflammatory cytokines, including MMP2 and IL-1 expression was observed. Both diluted HA_ncl and HA_cl significantly increased cell numbers compared to the controlled TCP samples at 3 and 5 days. HA_ncl and HA_cl in standard cell growth media significantly decreased ALP staining, COL1 immunostaining and down-regulated early osteogenic differentiation, including Runx2, COL1, and OCN mRNA levels when compared to control samples. When osteogenic differentiation medium (ODM) was added, interestingly, the expression of early osteogenic markers increased by demonstrating higher levels of COL1 and ALP expression; especially in HA 1:10 diluted condition. Late stage osteogenic markers remained inhibited. Conclusions: Both non-cross-linked and cross-linked HA maintained high PDL cell viability, increased proliferation, and early osteogenic differentiation. However, HA was consistently associated with a significant decrease in late osteogenic differentiation of primary human PDL cells. Future in vitro and animal research is necessary to further characterize the effect of HA on periodontal regeneration

    Revisiting differential control of sympathetic outflow by the rostral ventrolateral medulla

    Get PDF
    The rostral ventrolateral medulla (RVLM) is an important brain region involved in both resting and reflex regulation of the sympathetic nervous system. Anatomical evidence suggests that as a bilateral structure, each RVLM innervates sympathetic preganglionic neurons on both sides of the spinal cord. However, the functional importance of ipsilateral versus contralateral projections from the RVLM is lacking. Similarly, during hypotension, the RVLM is believed to rely primarily on withdrawal of tonic gamma aminobutyric acid (GABA) inhibition to increase sympathetic outflow but whether GABA withdrawal mediates increased activity of functionally different sympathetic nerves is unknown. We sought to test the hypothesis that activation of the ipsilateral versus contralateral RVLM produces differential increases in splanchnic versus adrenal sympathetic nerve activities, as representative examples of functionally different sympathetic nerves. We also tested whether GABA withdrawal is responsible for hypotension-induced increases in splanchnic and adrenal sympathetic nerve activity. To test our hypothesis, we measured splanchnic and adrenal sympathetic nerve activity simultaneously in Inactin-anesthetized, male Sprague-Dawley rats during ipsilateral or contralateral glutamatergic activation of the RVLM. We also produced hypotension (sodium nitroprusside, i.v.) before and after bilateral blockade of GABAA receptors in the RVLM (bicuculline, 5 mM 90 nL). Glutamate (100 mM, 30 nL) injected into the ipsilateral or contralateral RVLM produced equivalent increases in splanchnic sympathetic nerve activity, but increased adrenal sympathetic nerve activity by more than double with ipsilateral injections versus contralateral injections (p < 0.05; n = 6). In response to hypotension, increases in adrenal sympathetic nerve activity were similar after bicuculline (p > 0.05), but splanchnic sympathetic nerve activity responses were eliminated (p < 0.05; n = 5). These results provide the first functional evidence that the RVLM has predominantly ipsilateral innervation of adrenal nerves. In addition, baroreflex-mediated increases in splanchnic but not adrenal sympathetic nerve activity are mediated by GABAA receptors in the RVLM. Our studies provide a deeper understanding of neural control of sympathetic regulation and insight towards novel treatments for cardiovascular disease involving sympathetic nervous system dysregulation

    Integrated Data Analysis of Six Clinical Studies Points Toward Model-Informed Precision Dosing of Tamoxifen

    Get PDF
    Introduction: At tamoxifen standard dosing, ∌20% of breast cancer patients do not reach proposed target endoxifen concentrations >5.97 ng/mL. Thus, better understanding the large interindividual variability in tamoxifen pharmacokinetics (PK) is crucial. By applying non-linear mixed-effects (NLME) modeling to a pooled ‘real-world’ clinical PK database, we aimed to (i) dissect several levels of variability and identify factors predictive for endoxifen exposure and (ii) assess different tamoxifen dosing strategies for their potential to increase the number of patients reaching target endoxifen concentrations. Methods: Tamoxifen and endoxifen concentrations with genetic and demographic data of 468 breast cancer patients from six reported studies were used to develop a NLME parent-metabolite PK model. Different levels of variability on model parameters or measurements were investigated and the impact of covariates thereupon explored. The model was subsequently applied in a simulation-based comparison of three dosing strategies with increasing degree of dose individualization for a large virtual breast cancer population. Interindividual variability of endoxifen concentrations and the fraction of patients at risk for not reaching target concentrations were assessed for each dosing strategy. Results and Conclusions: The integrated NLME model enabled to differentiate and quantify four levels of variability (interstudy, interindividual, interoccasion, and intraindividual). Strong influential factors, i.e., CYP2D6 activity score, drug–drug interactions with CYP3A and CYP2D6 inducers/inhibitors and age, were reliably identified, reducing interoccasion variability to <20% CV. Yet, unexplained interindividual variability in endoxifen formation remained large (47.2% CV). Hence, therapeutic drug monitoring seems promising for achieving endoxifen target concentrations. Three tamoxifen dosing strategies [standard dosing (20 mg QD), CYP2D6-guided dosing (20, 40, and 60 mg QD) and individual model-informed precision dosing (MIPD)] using three therapeutic drug monitoring samples (5–120 mg QD) were compared, leveraging the model. The proportion of patients at risk for not reaching target concentrations was 22.2% in standard dosing, 16.0% in CYP2D6-guided dosing and 7.19% in MIPD. While in CYP2D6-guided- and standard dosing interindividual variability in endoxifen concentrations was high (64.0% CV and 68.1% CV, respectively), it was considerably reduced in MIPD (24.0% CV). Hence, MIPD demonstrated to be the most promising strategy for achieving target endoxifen concentrations

    Association of Noncirrhotic Portal Hypertension in HIV-Infected Persons and Antiretroviral Therapy with Didanosine: A Nested Case-Control Study

    Get PDF
    Background. Noncirrhotic portal hypertension (NCPH) is a newly described life-threatening liver disease of unknown cause in human immunodeficiency virus (HIV)-infected persons. Postulated pathogenesis includes prolonged exposure to antiretroviral therapy, particularly didanosine. Methods. We performed a nested case-control study including 15 patients with NCPH and 75 matched control subjects of the Swiss HIV Cohort Study to investigate risk factors for the development of NCPH. Matching criteria were similar duration of HIV infection, absence of viral hepatitis, and follow-up to at least the date of NCPH diagnosis in the respective case. Results. All 15 case patients had endoscopically documented esophageal varices and absence of liver cirrhosis on biopsies; 4 died because of hepatic complications. At NCPH diagnosis, case patients and control subjects were similar concerning sex; race; Centers for Disease Control and Prevention stage; HIV-RNA level; CD4 cell count nadir; and lipids and lipodystrophy. Differences were found in age (conditional logistic regression odds ratio [OR] for 10 years older, 2.9; 95% confidence interval [CI], 1.4-6.1); homosexuality (OR, 4.5; 95% CI, 1.2-17); current CD4 cell count <200 cells/”L (OR, 34.3; 95% CI, 4.3-277); diabetes mellitus (OR, 8.8; 95% CI, 1.6-49); alanine aminotransferase level higher than normal (OR, 13.0; 95% CI, 2.7-63); alkaline phosphatase higher than normal (OR, 18.3; 95% CI, 4.0-85); and platelets lower than normal (OR, 20.5; 95% CI, 2.4-178). Cumulative exposure to antiretroviral therapy (OR per year, 1.3; 95% CI, 1.0-1.6), nucleoside reverse-transcriptase inhibitor (OR, 1.3; 95% CI, 1.1-1.7), didanosine (OR, 3.4; 95% CI, 1.5-8.1), ritonavir (OR, 1.4; 95% CI, 1.0-1.9), and nelfinavir (OR, 1.4; 95% CI, 1.0-1.9) were longer in case patients. Exposure to nonnucleoside reverse-transcriptase inhibitor and other protease inhibitors were not different between groups. In bivariable models, only the association of NCPH with didanosine exposure was robust; other covariables were not independent risk factors. Conclusions. We found a strong association between prolonged exposure to didanosine and the development of NCP
    • 

    corecore