119 research outputs found

    Outflows from the youngest stars are mostly molecular

    Get PDF
    The formation of stars and planets is accompanied not only by the build-up of matter, namely accretion, but also by its expulsion in the form of highly supersonic jets that can stretch for several parsecs 1,2. As accretion and jet activity are correlated and because young stars acquire most of their mass rapidly early on, the most powerful jets are associated with the youngest protostars 3. This period, however, coincides with the time when the protostar and its surroundings are hidden behind many magnitudes of visual extinction. Millimetre interferometers can probe this stage but only for the coolest components 3. No information is provided on the hottest (greater than 1,000 K) constituents of the jet, that is, the atomic, ionized and high-temperature molecular gases that are thought to make up the jet’s backbone. Detecting such a spine relies on observing in the infrared that can penetrate through the shroud of dust. Here we report near-infrared observations of Herbig-Haro 211 from the James Webb Space Telescope, an outflow from an analogue of our Sun when it was, at most, a few times 104 years old. These observations\ua0reveal copious emission from hot molecules, explaining the origin of the ‘green fuzzies’ 4–7 discovered nearly two decades ago by the Spitzer Space Telescope 8. This outflow is found to be propagating slowly in comparison to its more evolved counterparts and, surprisingly, almost no trace of atomic or ionized emission is seen, suggesting its spine is almost purely molecular

    JWST MIRI flight performance: The Medium-Resolution Spectrometer

    Full text link
    The Medium-Resolution Spectrometer (MRS) provides one of the four operating modes of the Mid-Infrared Instrument (MIRI) on board the James Webb Space Telescope (JWST). The MRS is an integral field spectrometer, measuring the spatial and spectral distributions of light across the 5-28 μm\mu m wavelength range with a spectral resolving power between 3700-1300. We present the MRS's optical, spectral, and spectro-photometric performance, as achieved in flight, and we report on the effects that limit the instrument's ultimate sensitivity. The MRS flight performance has been quantified using observations of stars, planetary nebulae, and planets in our Solar System. The precision and accuracy of this calibration was checked against celestial calibrators with well-known flux levels and spectral features. We find that the MRS geometric calibration has a distortion solution accuracy relative to the commanded position of 8 mas at 5 μm\mu m and 23 mas at 28 μm\mu m. The wavelength calibration is accurate to within 9 km/sec at 5 μm\mu m and 27 km/sec at 28 μm\mu m. The uncertainty in the absolute spectro-photometric calibration accuracy was estimated at 5.6 +- 0.7 %. The MIRI calibration pipeline is able to suppress the amplitude of spectral fringes to below 1.5 % for both extended and point sources across the entire wavelength range. The MRS point spread function (PSF) is 60 % broader than the diffraction limit along its long axis at 5 μm\mu m and is 15 % broader at 28 μm\mu m. The MRS flight performance is found to be better than prelaunch expectations. The MRS is one of the most subscribed observing modes of JWST and is yielding many high-profile publications. It is currently humanity's most powerful instrument for measuring the mid-infrared spectra of celestial sources and is expected to continue as such for many years to come.Comment: 16 pages, 21 figure

    The global geography of human subsistence

    Get PDF
    How humans obtain food has dramatically reshaped ecosystems and altered both the trajectory of human history and the characteristics of human societies. Our species' subsistence varies widely, from predominantly foraging strategies, to plant-based agriculture and animal husbandry. The extent to which environmental, social and historical factors have driven such variation is currently unclear. Prior attempts to resolve long-standing debates on this topic have been hampered by an over-reliance on narrative arguments, small and geographically narrow samples, and by contradictory findings. Here we overcome these methodological limitations by applying multi-model inference tools developed in biogeography to a global dataset (818 societies). Although some have argued that unique conditions and events determine each society's particular subsistence strategy, we find strong support for a general global pattern in which a limited set of environmental, social and historical factors predicts an essential characteristic of all human groups: how we obtain our food

    Population-Based Rates of Revision of Primary Total Hip Arthroplasty: A Systematic Review

    Get PDF
    Background: Most research on failure leading to revision total hip arthroplasty (THA) is reported from single centers. We searched PubMed between January 2000 and August 2010 to identify population- or community-based studies evaluating ten-year revision risks. We report ten-year revision risk using the Kaplan-Meier method, stratifying by age and fixation technique. Results: Thirteen papers met the inclusion criteria. Cemented prostheses had Kaplan-Meier estimates of revision-free implant survival of ten years ranging from 88 % to 95%; uncemented prostheses had Kaplan-Meier estimates from 80 % to 85%. Estimates ranged from 72 % to 86 % in patients less than 60 years old and from 90 to 96 % in older patients. Conclusion: Data reported from national registries suggest revision risks of 5 to 20 % ten years following primary THA. Revision risks are lower in older THA recipients. Uncemented implants may have higher ten-year rates of revision, regardless of age

    Immunotherapy: is a minor god yet in the pantheon of treatments for lung cancer?

    Get PDF
    Immunotherapy has been studied for many years in lung cancer without significant results, making the majority of oncologists quite skeptical about its possible application for non-small cell lung cancer treatment. However, the recent knowledge about immune escape and subsequent 'cancer immunoediting' has yielded the development of new strategies of cancer immunotherapy, heralding a new era of lung cancer treatment. Cancer vaccines, including both whole-cell and peptide vaccines have been tested both in early and advanced stages of non-small cell lung cancer. New immunomodulatory agents, including anti-CTLA4, anti-PD1/PDL1 monoclonal antibodies, have been investigated as monotherapy in metastatic lung cancer. To date, these treatments have shown impressive results of efficacy and tolerability in early clinical trials, leading to testing in several large, randomized Phase III trials. As these results will be confirmed, these drugs will be available in the near future, offering new exciting therapeutic options for lung cancer treatment

    Identification of Mechanosensitive Genes during Embryonic Bone Formation

    Get PDF
    Although it is known that mechanical forces are needed for normal bone development, the current understanding of how biophysical stimuli are interpreted by and integrated with genetic regulatory mechanisms is limited. Mechanical forces are thought to be mediated in cells by “mechanosensitive” genes, but it is a challenge to demonstrate that the genetic regulation of the biological system is dependant on particular mechanical forces in vivo. We propose a new means of selecting candidate mechanosensitive genes by comparing in vivo gene expression patterns with patterns of biophysical stimuli, computed using finite element analysis. In this study, finite element analyses of the avian embryonic limb were performed using anatomically realistic rudiment and muscle morphologies, and patterns of biophysical stimuli were compared with the expression patterns of four candidate mechanosensitive genes integral to bone development. The expression patterns of two genes, Collagen X (ColX) and Indian hedgehog (Ihh), were shown to colocalise with biophysical stimuli induced by embryonic muscle contractions, identifying them as potentially being involved in the mechanoregulation of bone formation. An altered mechanical environment was induced in the embryonic chick, where a neuromuscular blocking agent was administered in ovo to modify skeletal muscle contractions. Finite element analyses predicted dramatic changes in levels and patterns of biophysical stimuli, and a number of immobilised specimens exhibited differences in ColX and Ihh expression. The results obtained indicate that computationally derived patterns of biophysical stimuli can be used to inform a directed search for genes that may play a mechanoregulatory role in particular in vivo events or processes. Furthermore, the experimental data demonstrate that ColX and Ihh are involved in mechanoregulatory pathways and may be key mediators in translating information from the mechanical environment to the molecular regulation of bone formation in the embryo

    EMU Detection of a Large and Low Surface Brightness Galactic SNR G288.8-6.3

    Full text link
    We present the serendipitous detection of a new Galactic Supernova Remnant (SNR), G288.8-6.3 using data from the Australian Square Kilometre Array Pathfinder (ASKAP)-Evolutionary Map of the Universe (EMU) survey. Using multi-frequency analysis, we confirm this object as an evolved Galactic SNR at high Galactic latitude with low radio surface brightness and typical SNR spectral index of α=0.41±0.12\alpha = -0.41\pm0.12. To determine the magnetic field strength in SNR G288.8-6.3, we present the first derivation of the equipartition formulae for SNRs with spectral indices α>0.5\alpha>-0.5. The angular size is 1.\!^\circ 8\times 1.\!^\circ 6 (107.\!^\prime 6 \times 98.\!^\prime 4) and we estimate that its intrinsic size is 40\sim40pc which implies a distance of 1.3\sim1.3kpc and a position of 140\sim140pc above the Galactic plane. This is one of the largest angular size and closest Galactic SNRs. Given its low radio surface brightness, we suggest that it is about 13000 years old.Comment: Accepted for publication in The Astrophysical Journa

    A Novel Metagenomic Short-Chain Dehydrogenase/Reductase Attenuates Pseudomonas aeruginosa Biofilm Formation and Virulence on Caenorhabditis elegans

    Get PDF
    In Pseudomonas aeruginosa, the expression of a number of virulence factors, as well as biofilm formation, are controlled by quorum sensing (QS). N-Acylhomoserine lactones (AHLs) are an important class of signaling molecules involved in bacterial QS and in many pathogenic bacteria infection and host colonization are AHL-dependent. The AHL signaling molecules are subject to inactivation mainly by hydrolases (Enzyme Commission class number EC 3) (i.e. N-acyl-homoserine lactonases and N-acyl-homoserine-lactone acylases). Only little is known on quorum quenching mechanisms of oxidoreductases (EC 1). Here we report on the identification and structural characterization of the first NADP-dependent short-chain dehydrogenase/reductase (SDR) involved in inactivation of N-(3-oxo-dodecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and derived from a metagenome library. The corresponding gene was isolated from a soil metagenome and designated bpiB09. Heterologous expression and crystallographic studies established BpiB09 as an NADP-dependent reductase. Although AHLs are probably not the native substrate of this metagenome-derived enzyme, its expression in P. aeruginosa PAO1 resulted in significantly reduced pyocyanin production, decreased motility, poor biofilm formation and absent paralysis of Caenorhabditis elegans. Furthermore, a genome-wide transcriptome study suggested that the level of lasI and rhlI transcription together with 36 well known QS regulated genes was significantly (≥10-fold) affected in P. aeruginosa strains expressing the bpiB09 gene in pBBR1MCS-5. Thus AHL oxidoreductases could be considered as potent tools for the development of quorum quenching strategies

    The Irish Rover: Phil Lynott and the Search for Identity

    Get PDF
    Phil Lynott, the lead singer of the rock band Thin Lizzy, was a complex character. An illegitimate black child who grew up in a working-class, Catholic district of Dublin, Ireland in the 1950s, Lynott spent his life searching for a sense of belonging, something which he explored through rock and roll. This study uses Lynott’s song lyrics to investigate his quest for identity. In particular, it identifies the many recurring themes and archetypes in his music that offered multifaceted self-portraits of his internal conflict between being black, Irish, illegitimate, a rockstar, a Lothario, a son, a father, and a husband, all at the same time
    corecore