204 research outputs found

    MTR and the EU Commission Proposal for the WTO: - An analysis of their effect on the EU and Irish agricultural sector

    Get PDF
    Further information may be found at http://www.tnet.teagasc.ie/fapri/pubandrep2003.htmIn the short history of the FAPRI-Ireland Partnership there has been no shortage of policy proposals to analyse. As part of the Agenda 2000 process the CAP is undergoing significant reform following the agreement made at the European Council in Berlin in 1999. This agreement had widespread implications for agriculture in Ireland, particularly for the beef sector. The changes that were agreed at that time have not even been fully implemented and there is already another reform document on the table, containing even more radical proposals for reform

    FAPRI-Ireland 2003 EU Baseline Briefing Book

    Get PDF
    For six years the FAPRI-Ireland Partnership has been producing analysis of agricultural policy for the EU, with a focus on the impacts for Ireland. The process that generates this analysis involves first developing a baseline, a set of figures produced under the assumption that current policies remain in place. In the case of Europe, this means that agricultural policy in the EU is that which prevailed in January 2003. The baseline does include the reforms that were agreed under Agenda 2000 that have yet to be implemented for the dairy sector, where intervention prices were scheduled to fall between 2005 and 2007, and provisions from the Uruguay round

    CAP Reform and the WTO: Potential Impacts on EU Agriculture

    Get PDF
    Selected Paper prepared for presentation at the American Agricultural Economics Association Annual Meeting, Denver, Colorado.In 2003 an agreement was finalized to instigate arguably the most significant reform of the European Union's (EU) Common Agricultural Policy (CAP) since its inception. In the Luxembourg Agreement many of the direct payments that have been linked to production are decoupled and instead provided in the form of a land-based payment. The reforms did not include any significant changes to either EU border support or the ability of the EU to utilize export subsidies that have been widely criticized by other nations. Even though the reforms do not directly address trade in agricultural products it is argued that World Trade Organization (WTO) concerns played a significant role in the designs of the reforms. In this paper an analysis of the Luxembourg reforms and the European proposal for agriculture under the WTO is presented. The results are used as the basis for a discussion of the interaction of the WTO and CAP reform and the implications for the agricultural sector in the EU

    FAPRI-Ireland 2001 EU Baseline Briefing Book

    Get PDF
    In April 2001, members of the FAPRI-Ireland partnership prepared baseline projections for European Union cereal, oilseed, meat, and dairy markets. These projections represent our best estimate of what EU markets would look like under a very specific set of assumptions

    FAPRI - Ireland 2002 EU Baseline Briefing Book

    Get PDF
    Each year the FAPRI-Ireland Partnership produces a baseline series of projections for the major European agricultural markets. Projections are produced for the EU as a whole as well as Ireland, France, Germany, Italy and the United Kingdom

    Dose-dependent sensorimotor impairment in human ocular tracking after acute low-dose alcohol administration

    Get PDF
    Key points: Oculomotor behaviours are commonly used to evaluate sensorimotor disruption due to ethanol (EtOH). The current study demonstrates the dose-dependent impairment in oculomotor and ocular behaviours across a range of ultra-low BACs (\u3c0.035%). Processing of target speed and direction, as well as pursuit eye movements, are significantly impaired at 0.015% BAC, suggesting impaired neural activity within brain regions associated with the visual processing of motion. Catch-up saccades during steady visual tracking of the moving target compensate for the reduced vigour of smooth eye movements that occurs with the ingestion of low-dose alcohol. Saccade dynamics start to become ‘sluggish’ at as low as 0.035% BAC. Pupillary light responses appear unaffected at BAC levels up to 0.065%. Abstract: Changes in oculomotor behaviours are often used as metrics of sensorimotor disruption due to ethanol (EtOH); however, previous studies have focused on deficits at blood-alcohol concentrations (BACs) above about 0.04%. We investigated the dose dependence of the impairment in oculomotor and ocular behaviours caused by EtOH administration across a range of ultra-low BACs (≤0.035%). We took repeated measures of oculomotor and ocular performance from sixteen participants, both pre- and post-EtOH administration. To assess the neurological impacts across a wide range of brain areas and pathways, our protocol measured 21 largely independent performance metrics extracted from a range of behavioural responses ranging from ocular tracking of radial step-ramp stimuli, to eccentric gaze holding, to pupillary responses evoked by light flashes. Our results show significant impairment of pursuit and visual motion processing at 0.015% BAC, reflecting degraded neural processing within extrastriate cortical pathways. However, catch-up saccades largely compensate for the tracking displacement shortfall caused by low pursuit gain, although there still is significant residual retinal slip and thus degraded dynamic acuity. Furthermore, although saccades are more frequent, their dynamics are more sluggish (i.e. show lower peak velocities) starting at BAC levels as low as 0.035%. Small effects in eccentric gaze holding and no effect in pupillary response dynamics were observed at levels below 0.07%, showing the higher sensitivity of the pursuit response to very low levels of blood alcohol, under the conditions of our study

    Low-Dose Caffeine Administration During Acute Sleep Deprivation Eliminates Visual Motion Processing Impairment, but Does Not Improve Saccadic Rate

    Get PDF
    Oculomotor tracking performance changes according to time awake. A constant routine (CR) study demonstrated that increasing time awake 1) reduces the precision of visual motion processing, 2) decreases steady-state closed-loop pursuit performance and 3) decreases peak saccadic velocity. We aimed to determine the contribution of homeostatic sleep pressure on these oculometric changes by administering low-dose caffeine over one night of sleep deprivation. Participants completed two weeks of at-home 8.5 hours sleep per day, followed by an approximately 24-hour laboratory CR in semi-recumbent posture under less than 4 lux of light. The visual tracking task was performed every two hours after waking and hourly overnight. Low-dose caffeine of 0.3 milligrams per kilogram was administered hourly during the biological night. Nine participants (5F) completed the study. Caffeine dosing: 1) prevented the impairment of visual motion processing, 2) reduced by approximately half the impairment of closed-loop pursuit performance (gain, minus 0.47 percent per hour, significance of slope change: p (probability) less than 0.006; proportion smooth, minus 0.35 percent per hour, p less than 0.005), and 3) had an insignificant (p less than 0.39) effect on the impairment of saccadic peak velocity (slope, minus 1.13 percent per hour; intercept, minus 0.62 percent per hour). These results suggest that visual motion processing and some proportion of closed-loop pursuit performance are impaired due to homeostatic mechanisms during sleep deprivation

    Impairment of Human Ocular Tracking with Low-Dose Alcohol

    Get PDF
    Previous studies have documented adverse effects of alcohol on oculomotor performance. For example, moderate-dose alcohol (yielding a Blood Alcohol Concentration or BAC of 0.04-0.1%) has been shown to decrease steady-state pursuit gain (Fransson et al., 2010, Clin Neurophysiol, 121(12): 2134; Moser et al., 1998, J Neurol, 245(8): 542; Roche & King, 2010, Psychopharmacology, 212(1): 33), to increase saccade latency (Moser et al., 1998, J Neurol, 245(8): 542; Roche & King, 2010, Psychopharmacology, 212(1): 33), to decrease peak saccadic velocity (Fransson et al., 2010, Clin Neurophysiol, 121(12): 2134; Roche & King, 2010, Psychopharmacology, 212(1): 33), and to increase the frequency of catch-up saccades (Moser et al., 1998, J Neurol, 245(8): 542). Here, we administered two doses of ethanol on different days, yielding moderate (0.06%) and low (0.02%) levels of initial BAC, to examine the effects on human ocular tracking over BACs ranging from 0.00 to 0.07%. Twelve subjects (8 females) participated in a 5-day study. Three days of at-home measurements of daily activity and sleep were monitored, followed by two laboratory days where, ~5 hours after awakening, we administered one of the two possible single doses of alcohol. Using a previously published paradigm (Liston & Stone, 2014, J Vis, 14(14): 12), we measured oculomotor performance multiple times throughout the day with three pre-dosing baseline runs and bi-hourly post-dosing test runs until the subject recorded a BAC of 0.00% for two hours. BAC was measured before each run using an Alco-Sensor IV breathalyzer (Intoximeters, Inc., St. Louis, MO). For each of the oculometric measures, for each subject, we computed the within-subject % deviation for each test run from their baseline averaged across their three pre-dosing runs. We then averaged the data across subjects in 0.01% BAC bins. Finally, we used linear regression to compute the slope and x-intercept (threshold) of the mean binned % deviation as a function of BAC. We found that pursuit initiation was impaired at very low BAC levels, with significant (p < 0.002) linear trends in latency (+1.3%/0.01%BAC) and initial acceleration (-4.6%/0.01%BAC) with extrapolated absolute thresholds at or below 0.01% BAC. We also found that steady-state tracking was impaired showing significant (p < 0.002) linear trends in gain (- 3.8%/0.01%BAC) and catch-up saccade amplitude (+9.1%/0.01%BAC), again with extrapolated absolute thresholds around 0.01% BAC. We also found a significant (p < 0.02) increase in pursuit direction noise (+9.8%/0.01%BAC) with an extrapolated absolute threshold below 0.01% BAC. Many aspects of ocular tracking are impaired in a dose-dependent manner beginning at a BAC level around 0.01%, with significant effects at levels lower than previously reported and up to 8-times lower than the legal limit for driving in most states

    Increased Dependence on Saccades for Ocular Tracking with Low Dose Alcohol

    Get PDF
    Previous studies have shown that certain features of oculomotor performance are impaired at or slightly below the legal limit for driving in most U.S. States (0.08% Blood Alcohol Concentration or BAC). Specifically, alcohol impairs saccadic velocity and steady-state tracking at levels between 0.04% and 0.1% BAC. Here we used a suite of standardized oculometric measures to examine the effect of ultra-low levels of alcohol (down to 0.01% BAC) on steady-state tracking. Our high-uncertainty tracking task reveals that the smooth pursuit system is highly sensitive to BAC, with impairmentextrapolating back to BAC levels at or below 0.01%. BAC generates a dose dependent increase in reliance on the saccadic system that maintains overall steady-state tracking effectiveness at least up to 0.08% BAC, albeit with a significant decrease in smoothness

    Supervision of a self-driving vehicle unmasks latent sleepiness relative to manually controlled driving

    Get PDF
    Human error has been implicated as a causal factor in a large proportion of road accidents. Automated driving systems purport to mitigate this risk, but self-driving systems that allow a driver to entirely disengage from the driving task also require the driver to monitor the environment and take control when necessary. Given that sleep loss impairs monitoring performance and there is a high prevalence of sleep deficiency in modern society, we hypothesized that supervising a self-driving vehicle would unmask latent sleepiness compared to manually controlled driving among individuals following their typical sleep schedules. We found that participants felt sleepier, had more involuntary transitions to sleep, had slower reaction times and more attentional failures, and showed substantial modifications in brain synchronization during and following an autonomous drive compared to a manually controlled drive. Our findings suggest that the introduction of partial self-driving capabilities in vehicles has the potential to paradoxically increase accident risk
    • …
    corecore