12 research outputs found

    A novel codominant marker for selection of the null \u3ci\u3eWx-B1\u3c/i\u3e allele in wheat breeding programs

    Get PDF
    Waxy protein (granule-bound starch synthase I) is a key enzyme in the synthesis of amylose in endosperm tissue. The amylose content of wheat flour plays a significant role in determining Japanese udon noodle quality. Most wheat cultivars suitable for producing udon noodles have a low amylose level due to a lack of Wx-B1 protein conditioned by null Wx-B1 alleles. It was previously determined that the entire coding region of the wheat Wx-B1 gene is deleted in the most common null allele. However, the extent and breakpoints of the deletion have not been established. In this study, the position of the 30 deletion breakpoint was refined by mapping with PCR-based markers. Using information from this analysis, a chromosome walk was initiated and the DNA sequence flanking the deletion breakpoints was obtained. The deletion included a 3,872 bp region downstream from the termination codon of Wx-B1 gene. Based on similarity with T. monococcum sequences, it was estimated that approximately 60 KB upstream of the Wx-B1 gene was also deleted. Using this sequence information, a codominant marker for the identification of the Wx-B1 null allele was developed. This marker can unambiguously identify heterozygous plants, which will accelerate the selection of partial waxy mutants carrying the Wx-B1 null allele

    Two FAD3 Desaturase Genes Control the Level of Linolenic Acid in Flax Seed

    No full text
    Industrial oil flax (Linum usitatissimum) and edible oil or solin flax differ markedly in seed linolenic acid levels. Despite the economic importance of low-linolenic-acid or solin flax, the molecular mechanism underlying this trait has not been established. Two independently inherited genes control the low-linolenic-acid trait in flax. Here, we identified two genes, LuFAD3A and LuFAD3B that encode microsomal desaturases capable of desaturating linoleic acid. The deduced proteins encoded by these genes shared 95.4% identity. In the low-linolenic-acid line solin 593-708, both LuFAD3A and LuFAD3B carry point mutations that produce premature stop codons. Expression of these genes in yeast (Saccharomyces cerevisiae) demonstrated that, while the wild-type proteins were capable of desaturating linoleic acid, the truncated proteins were inactive. Furthermore, the low-linolenic-acid phenotype in flax was complemented by transformation with a wild-type gene. Codominant DNA markers were developed to distinguish between null and wild-type alleles of both genes, and linolenic acid levels cosegregated with genotypes, providing further proof that LuFAD3A and LuFAD3B are the major genes controlling linolenic acid levels in flax. The level of LuFAD3 transcripts in seeds peaked at about 20 d after flowering, and transcripts were not detectable in leaf, root, or stem tissue. A dramatic reduction in transcript levels of both genes occurred in the low-linolenic-acid solin line, which was likely due to nonsense-mediated decay

    Type II Diacylglycerol Acyltransferase from Claviceps purpurea with Ricinoleic Acid, a Hydroxyl Fatty Acid of Industrial Importance, as Preferred Substrate ▿

    No full text
    Claviceps purpurea, the fungal pathogen that causes the cereal disease ergot, produces glycerides that contain high levels of ricinoleic acid [(R)-12-hydroxyoctadec-cis-9-enoic acid] in its sclerotia. Recently, a fatty acid hydroxylase (C. purpurea FAH [CpFAH]) involved in the biosynthesis of ricinoleic acid was identified from this fungus (D. Meesapyodsuk and X. Qiu, Plant Physiol. 147:1325-1333, 2008). Here, we describe the cloning and biochemical characterization of a C. purpurea type II diacylglycerol acyltransferase (CpDGAT2) involved in the assembly of ricinoleic acid into triglycerides. The CpDGAT2 gene was cloned by degenerate RT-PCR (reverse transcription-PCR). The expression of this gene restored the in vivo synthesis of triacylglycerol (TAG) in the quadruple mutant strain Saccharomyces cerevisiae H1246, in which all four TAG biosynthesis genes (DGA1, LRO1, ARE1, and ARE2) are disrupted. In vitro enzymatic assays using microsomal preparations from the transformed yeast strain indicated that CpDGAT2 prefers ricinoleic acid as an acyl donor over linoleic acid, oleic acid, or linolenic acid, and it prefers 1,2-dioleoyl-sn-glycerol over 1,2-dipalmitoyl-sn-glycerol as an acyl acceptor. The coexpression of CpFAH with CpDGAT2 in yeast resulted in an increased accumulation of ricinoleic acid compared to the coexpression of CpFAH with the native yeast DGAT2 (S. cerevisiae DGA1 [ScDGA1]) or the expression of CpFAH alone. Northern blot analysis indicated that CpFAH is expressed solely in sclerotium cells, with no transcripts of this gene being detected in mycelium or conidial cells. CpDGAT2 was more widely expressed among the cell types examined, although expression was low in conidiospores. The high expression of CpDGAT2 and CpFAH in sclerotium cells, where high levels of ricinoleate glycerides accumulate, provided further evidence supporting the roles of CpDGAT2 and CpFAH as key enzymes for the synthesis and assembly of ricinoleic acid in C. purpurea

    Amylose and amylopectin functionality during storage of bread prepared from flour of wheat containing unique starches

    No full text
    Bread crumb firming is largely determined by the properties of gluten and starch, and the transformations they undergo during bread making and storage. Amylose (AM) and amylopectin (AP) functionality in fresh and stored bread was investigated with NMR relaxometry. Bread was prepared from flours containing normal and atypical starches, e.g., flour from wheat line 5-5, with or without the inclusion of Bacillus stearothermophilus α-amylase. Initial crumb firmness increased with higher levels of AM or shorter AM chains. Both less extended AM and gluten networks and too rigid AM networks led to low crumb resilience. AP retrogradation during storage increased when crumb contained more AP or longer AP branch chains. Shorter AP branch chains, which were present at higher levels in 5-5 than in regular bread, were less prone to retrogradation, thereby limiting gluten network dehydration due to gluten to starch moisture migration. Correspondingly, crumb firming in 5-5 bread was restricted.status: publishe

    Amylose and amylopectin functionality during baking and cooling of bread prepared from flour of wheat containing unusual starches: A temperature-controlled time domain H-1 NMR study

    No full text
    Amylose (AM) and amylopectin (AP) functionality during bread making was unravelled with a temperature-controlled time domain proton nuclear magnetic resonance (TD 1H NMR) toolbox. Fermented doughs from wheat flour containing starches with atypical AP chain length distribution and/or AM to AP ratio, or supplemented with Bacillus stearothermophilus α-amylase (BStA) were analyzed in situ during baking and cooling. The gelatinization temperature of starch logically depended on AP crystal stability. It was lower when starch contained a higher portion of short AP branches and higher when starch had higher AP content. During cooling, the onset temperature and extent of AM crystallization were positively related to starch AM content. BStA use resulted in slightly weakened starch networks and increased the starch polymers' mobility at the end of baking. That proton distributions evolved in a way corresponding to starch characteristics supports the suggested interpretation of NMR profiles during baking and cooling.status: publishe

    Using the Hexaploid Nature of Wheat To Create Variability in Starch Characteristics

    No full text
    In hexaploid crops, such as bread wheat, it should be possible to fine-tune phenotypic traits by identifying wild-type and null genes from each of the three genomes and combining them in a calculated manner. Here, we demonstrate this with gene combinations for two starch synthesis genes, <i>SSIIa</i> and <i>GBSSI</i>. Lines with inactive copies of both enzymes show a very dramatic change in phenotype, so to create intermediate phenotypes, we used marker-assisted selection to develop near-isogenic lines (NILs) carrying homozygous combinations of null alleles. For both genes, gene dosage effects follow the order B > D ≥ A; therefore, we completed detailed analysis of starch characteristics for NIL 3-3, which is null for the B-genome copy of the <i>SSIIa</i> and <i>GBSSI</i> genes, and NIL 5-5, which has null mutations in the B- and D-genome-encoded copies of both of these genes. The effects of the combinations on phenotypic traits followed the order expected on the basis of genotype, with NIL 5-5 showing the largest differences from the wild type, while NIL 3-3 characteristics were intermediate between NIL 5-5 and the wild type. Differences among genotypes were significant for many starch characteristics, including percent amylose, chain length distribution, gelatinization temperature, retrogradation, and pasting properties, and these differences appeared to translate into improvements in end-product quality, since bread made from type 5-5 flour showed a 3 day lag in staling
    corecore