12 research outputs found
Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics
Bacterial small non-coding RNAs (sRNAs) are being recognized as novel widespread regulators of gene expression in response to environmental signals. Here, we present the first search for sRNA-encoding genes in the nitrogen-fixing endosymbiont Sinorhizobium meliloti, performed by a genome-wide computational analysis of its intergenic regions. Comparative sequence data from eight related Ī±-proteobacteria were obtained, and the interspecies pairwise alignments were scored with the programs eQRNA and RNAz as complementary predictive tools to identify conserved and stable secondary structures corresponding to putative non-coding RNAs. Northern experiments confirmed that eight of the predicted loci, selected among the original 32 candidates as most probable sRNA genes, expressed small transcripts. This result supports the combined use of eQRNA and RNAz as a robust strategy to identify novel sRNAs in bacteria. Furthermore, seven of the transcripts accumulated differentially in free-living and symbiotic conditions. Experimental mapping of the 5ā²-ends of the detected transcripts revealed that their encoding genes are organized in autonomous transcription units with recognizable promoter and, in most cases, termination signatures. These findings suggest novel regulatory functions for sRNAs related to the interactions of Ī±-proteobacteria with their eukaryotic hosts
Collagen prolyl hydroxylation-dependent metabolic perturbation governs epigenetic remodeling and mesenchymal transition in pluripotent and cancer cells
Collagen prolyl hydroxylation (CPH), which is catalyzed by prolyl 4-hydroxylase (P4H), is the most prevalent posttranslational modification in humans and requires Vitamin C (VitC). Here we demonstrate that CPH acts as an epigenetic modulator of cell plasticity. Increased CPH induced global DNA/histone methylation in pluripotent stem and tumor cells and promoted cell state transition (CST). Interfering with CPH by either genetic ablation of P4H subunit alpha-2 (P4HA2) or pharmacologic treatment reverted epigenetic changes and antagonized CST. Mechanistically, we suggest that CPH modifies the epigenetic landscape by reducing VitC for DNA and histone demethylases. Repurposed drugs targeting CPH-mediated metabolic perturbation, such as the antiasthmatic Budesonide, blocked metastatic dissemination of breast cancer cells in vivo by preventing mesenchymal transition. Our study provides mechanistic insights into how metabolic cues and epigenetic factors integrate to control cell state transition and paves the way for the development of novel antimetastatic strategies. Significance: A phenotype-based high-throughput screening reveals unforeseen metabolic control of cell plasticity and identifies budesonide as a drug candidate for metastatic cancer
Sulphadimethoxine inhibits Phaseolus vulgaris root growth and development of N-ļ¬xing nodules
Sulphonamides contamination of cultivated lands occurs through the recurrent spreading of animal wastes from intensive farming. The aim of this study was to test the effect(s) of sulphadimethoxine on the beneļ¬cial N-ļ¬xing Rhizobium etliāPhaseolus vulgaris symbiosis under laboratory conditions. The consequence of increasing concentrations of sulphadimethoxine on the growth ability of free-living R. etli bacteria, as well as on seed germination, seedling development and growth of common bean plants was examined.We have established that sulphadimethoxine inhibited the growth of both symbiotic part- ners in a dose-dependent manner. Bacterial invasion occurring in developing root nodules was visualized by ļ¬uorescence microscopy generating EGFP-marked R. etli bacteria. Our results proved that the development of symbiotic N-ļ¬xing root nodules is hampered by sulphadimethoxine thus identifying sulphona mides as toxic compounds for the Rhizobiumālegume symbiosis: a low-input sustainable agricultural practice
Vitamin C and L-Proline Antagonistic Effects Capture Alternative States in the Pluripotency Continuum
Contains fulltext :
165841.pdf (publisher's version ) (Open Access
Higher-order connections between stereotyped subsets: implications for improved patient classification in CLL
Chronic lymphocytic leukemia (CLL) is characterized by the existence of subsets of patients with (quasi)identical, stereotyped B-cell receptor (BcR) immunoglobulins. Patients in certain major stereotyped subsets often display remarkably consistent clinicobiological profiles, suggesting that the study of BcR immunoglobulin stereotypy in CLL has important implications for understanding disease pathophysiology and refining clinical decision-making. Nevertheless, several issues remain open, especially pertaining to the actual frequency of BcR immunoglobulin stereotypy and major subsets, as well as the existence of higher-order connections between individual subsets. To address these issues, we investigated clonotypic IGHV-IGHD-IGHJ gene rearrangements in a series of 29 856 patients with CLL, by far the largest series worldwide. We report that the stereotyped fraction of CLL peaks at 41% of the entire cohort and that all 19 previously identified major subsets retained their relative size and ranking, while 10 new ones emerged; overall, major stereotyped subsets had a cumulative frequency of 13.5%. Higher-level relationships were evident between subsets, particularly for major stereotyped subsets with unmutated IGHV genes (U-CLL), for which close relations with other subsets, termed āsatellites,ā were identified. Satellite subsets accounted for 3% of the entire cohort. These results confirm our previous notion that major subsets can be robustly identified and are consistent in relative size, hence representing distinct disease variants amenable to compartmentalized research with the potential of overcoming the pronounced heterogeneity of CLL. Furthermore, the existence of satellite subsets reveals a novel aspect of repertoire restriction with implications for refined molecular classification of CLL. Key Points: ā¢ In a series of 29 856 CLL patients, the incidence of BcR stereotypy peaked at 41%. ā¢ Higher-order relations exist between stereotyped subsets, particularly for those from U-CLL, for which satellite subsets were identified. Ā© 2021 American Society of Hematolog