72 research outputs found

    Electron interferometry with nano-gratings

    Get PDF
    We present an electron interferometer based on near-field diffraction from two nanostructure gratings. Lau fringes are observed with an imaging detector, and revivals in the fringe visibility occur as the separation between gratings is increased from 0 to 3 mm. This verifies that electron beams diffracted by nanostructures remain coherent after propagating farther than the Talbot length zT=2d2/λz_T = 2d^2/\lambda = 1.2 mm, and hence is a proof of principle for the function of a Talbot-Lau interferometer for electrons. Distorted fringes due to a phase object demonstrates an application for this new type of electron interferometer.Comment: 4 pgs, 6 figure

    Image transmission through a stable paraxial cavity

    Full text link
    We study the transmission of a monochromatic "image" through a paraxial cavity. Using the formalism of self-transform functions, we show that a transverse degenerate cavity transmits the self-transform part of the image, with respect to the field transformation over one round-trip of the cavity. This formalism gives a new insight on the understanding of the behavior of a transverse degenerate cavity, complementary to the transverse mode picture. An experiment of image transmission through a hemiconfocal cavity show the interest of this approach.Comment: submitted to Phys. Rev.

    Moir\'e patterns in quantum images

    Get PDF
    We observed moir\'e fringes in spatial quantum correlations between twin photons generated by parametric down-conversion. Spatially periodic structures were nonlocally superposed giving rise to beat frequencies typical of moir\'e patterns. This result brings interesting perspectives regarding metrological applications of such a quantum optical setup.Comment: 4 pages, 5 figure

    The Mouvement republicain populaire : its role and position in French politics in 1951.

    Get PDF
    n/

    An electron Talbot interferometer

    Full text link
    The Talbot effect, in which a wave imprinted with transverse periodicity reconstructs itself at regular intervals, is a diffraction phenomenon that occurs in many physical systems. Here we present the first observation of the Talbot effect for electron de Broglie waves behind a nanofabricated transmission grating. This was thought to be difficult because of Coulomb interactions between electrons and nanostructure gratings, yet we were able to map out the entire near-field interference pattern, the "Talbot carpet", behind a grating. We did this using a Talbot interferometer, in which Talbot interference fringes from one grating are moire'-filtered by a 2nd grating. This arrangement has served for optical, X-ray, and atom interferometry, but never before for electrons. Talbot interferometers are particularly sensitive to distortions of the incident wavefronts, and to illustrate this we used our Talbot interferometer to measure the wavefront curvature of a weakly focused electron beam. Here we report how this wavefront curvature demagnified the Talbot revivals, and we discuss applications for electron Talbot interferometers.Comment: 5 pages, 5 figures, updated version with abstrac

    Factorization of Numbers with the temporal Talbot effect: Optical implementation by a sequence of shaped ultrashort pulses

    Full text link
    We report on the successful operation of an analogue computer designed to factor numbers. Our device relies solely on the interference of classical light and brings together the field of ultrashort laser pulses with number theory. Indeed, the frequency component of the electric field corresponding to a sequence of appropriately shaped femtosecond pulses is determined by a Gauss sum which allows us to find the factors of a number

    Talbot effect in cylindrical waveguides

    Full text link
    We extend the theory of Talbot revivals for planar or rectangular geometry to the case of cylindrical waveguides. We derive a list of conditions that are necessary to obtain revivals in cylindrical waveguides. A phase space approach based on the Wigner and the Kirkwood-Rihaczek functions provides a pictorial representation of TM modes interference associated with the Talbot effect

    The wave nature of biomolecules and fluorofullerenes

    Full text link
    We demonstrate quantum interference for tetraphenylporphyrin, the first biomolecule exhibiting wave nature, and for the fluorofullerene C60F48 using a near-field Talbot-Lau interferometer. For the porphyrins, which are distinguished by their low symmetry and their abundant occurence in organic systems, we find the theoretically expected maximal interference contrast and its expected dependence on the de Broglie wavelength. For C60F48 the observed fringe visibility is below the expected value, but the high contrast still provides good evidence for the quantum character of the observed fringe pattern. The fluorofullerenes therefore set the new mark in complexity and mass (1632 amu) for de Broglie wave experiments, exceeding the previous mass record by a factor of two.Comment: 5 pages, 4 figure

    Theory of decoherence in a matter wave Talbot-Lau interferometer

    Full text link
    We present a theoretical framework to describe the effects of decoherence on matter waves in Talbot-Lau interferometry. Using a Wigner description of the stationary beam the loss of interference contrast can be calculated in closed form. The formulation includes both the decohering coupling to the environment and the coherent interaction with the grating walls. It facilitates the quantitative distinction of genuine quantum interference from the expectations of classical mechanics. We provide realistic microscopic descriptions of the experimentally relevant interactions in terms of the bulk properties of the particles and show that the treatment is equivalent to solving the corresponding master equation in paraxial approximation.Comment: 20 pages, 4 figures (minor corrections; now in two-column format

    Decoherence of matter waves by thermal emission of radiation

    Full text link
    Emergent quantum technologies have led to increasing interest in decoherence - the processes that limit the appearance of quantum effects and turn them into classical phenomena. One important cause of decoherence is the interaction of a quantum system with its environment, which 'entangles' the two and distributes the quantum coherence over so many degrees of freedom as to render it unobservable. Decoherence theory has been complemented by experiments using matter waves coupled to external photons or molecules, and by investigations using coherent photon states, trapped ions and electron interferometers. Large molecules are particularly suitable for the investigation of the quantum-classical transition because they can store much energy in numerous internal degrees of freedom; the internal energy can be converted into thermal radiation and thus induce decoherence. Here we report matter wave interferometer experiments in which C70 molecules lose their quantum behaviour by thermal emission of radiation. We find good quantitative agreement between our experimental observations and microscopic decoherence theory. Decoherence by emission of thermal radiation is a general mechanism that should be relevant to all macroscopic bodies.Comment: 5 pages, 4 figure
    • 

    corecore