6 research outputs found

    Entropy-Based Temporal Downscaling of Precipitation as Tool for Sediment Delivery Ratio Assessment

    Get PDF
    Many regions around the globe are subjected to precipitation-data scarcity that often hinders the capacity of hydrological modeling. The entropy theory and the principle of maximum entropy can help hydrologists to extract useful information from the scarce data available. In this work, we propose a new method to assess sub-daily precipitation features such as duration and intensity based on daily precipitation using the principle of maximum entropy. Particularly in arid and semiarid regions, such sub-daily features are of central importance for modeling sediment transport and deposition. The obtained features were used as input to the SYPoME model (sediment yield using the principle of maximum entropy). The combined method was implemented in seven catchments in Northeast Brazil with drainage areas ranging from 10−3 to 10+2 km2 in assessing sediment yield and delivery ratio. The results show significant improvement when compared with conventional deterministic modeling, with Nash–Sutcliffe efficiency (NSE) of 0.96 and absolute error of 21% for our method against NSE of −4.49 and absolute error of 105% for the deterministic approach.DFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische UniversitĂ€t Berli

    Hochwasser und Sturzfluten an FlĂŒssen in Deutschland

    Get PDF
    Flusshochwasser werden in lokale und plotzliche Sturzfluten und in Hochwasser an groseren Flussen unterschieden. Fur verschiedene Hochwasserindikatoren und Flusseinzugsgebiete ergeben sich erhebliche Unterschiede, wobei sowohl uberwiegend aus Regen als auch uberwiegend aus Schmelzwasser gespeiste Hochwasserereignisse betrachtet werden. Besondere Aufmerksamkeit finden Hochwasserereignisse an Rhein, Elbe, Weser und Ems sowie die Entwicklung von Sturzfluten infolge von Extremniederschlagen kurzer Dauer, wobei die Beobachtungen und Trends zu Modellierungsergebnissen in Beziehung gesetzt werden. Auch die Notwendigkeit von Anpassungsmasnahmen aufgrund uberwiegend positiver Trends wird diskutiert

    Impact of shading on evapotranspiration and water stress of urban trees

    No full text
    AbstractEvapotranspiration of urban street trees is essential in mitigating urban heat islands due to its cooling effect. However, current shifts in rainfall and temperature regimes towards drier and hotter periods in Central Europe have caused substantial water stress for street trees. Quantifying and subsequently managing these changing dynamics as well as estimating evapotranspiration and water availability is necessary but at the same time extremely challenging in urban environments. Both dynamics are influenced by soil sealing and complex shading patterns of the surrounding street canyon, which vary on a small spatial scale as a function of the canyon layout and orientation. In the present study, the diurnal patterns of six typical urban shading types for street trees were derived by considering a large set of street orientations, widths and tree positions within the street canyon. A shading model was integrated into a hydrological urban tree model to assess the impact of those shading types on diurnal patterns of radiation and evapotranspiration rates calculated using the Penman–Monteith approach and the resulting soil moisture conditions for several vegetation seasons and water‐supply scenarios. The modelling results showed that the six shading patterns significantly influenced the simulated hourly, daily and seasonal potential and actual evapotranspiration rates and water availability. Shaded trees have a substantially reduced, simulated water stress period, regardless of initial water supply, and are able to provide a longer‐lasting cooling function during dry periods due to higher evapotranspiration rates later in the summer season.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection http://dx.doi.org/10.13039/50110001354

    Entropy-Based Temporal Downscaling of Precipitation as Tool for Sediment Delivery Ratio Assessment

    No full text
    Many regions around the globe are subjected to precipitation-data scarcity that often hinders the capacity of hydrological modeling. The entropy theory and the principle of maximum entropy can help hydrologists to extract useful information from the scarce data available. In this work, we propose a new method to assess sub-daily precipitation features such as duration and intensity based on daily precipitation using the principle of maximum entropy. Particularly in arid and semiarid regions, such sub-daily features are of central importance for modeling sediment transport and deposition. The obtained features were used as input to the SYPoME model (sediment yield using the principle of maximum entropy). The combined method was implemented in seven catchments in Northeast Brazil with drainage areas ranging from 10−3 to 10+2 km2 in assessing sediment yield and delivery ratio. The results show significant improvement when compared with conventional deterministic modeling, with Nash–Sutcliffe efficiency (NSE) of 0.96 and absolute error of 21% for our method against NSE of −4.49 and absolute error of 105% for the deterministic approach

    Flash droughts and their impacts—using newspaper articles to assess the perceived consequences of rapidly emerging droughts

    No full text
    Flash droughts (FDs) have attracted increasing attention in the past decade. They are characterised by a rapid depletion of soil moisture resulting from interactions between the soil and atmospheric conditions. To date, there is a lack of consistent FD definitions and an understanding of their socio-economic impacts. Here, we explore the relationship between biophysical FD conditions and the perceived impacts of FDs in Germany between 2000 and 2022. We measured perceived impacts by analysing consequences reported in newspaper articles (2000–2022) and online search behaviour using Google trends data (2004–2022). To characterise the physical process, we considered root zone soil moisture data. Our results show that FDs are becoming increasingly frequent in Germany, occurring once every two years on average. Despite the lack of knowledge from the general public regarding the phenomenon of FDs, the peaks of interest in drought impacts correspond to the physical occurrence of FDs across the country. We identified an average time gap of four weeks between FD onset and the reporting of perceived impacts. This gap is longer than the average duration of FDs’ onset. Consequently, our findings highlight that consistent monitoring of FD conditions and drivers is necessary to guarantee effective preparedness. As impact perception is too slow to allow the adoption of mitigation measures, FDs require new schemes for response measures compared with slowly emerging (conventional) drought events. The novel method also allows the consistent and impact-based validation of FD identification methods

    Climate change in Afghanistan deduced from reanalysis and coordinated regional climate downscaling experiment (CORDEX)—South Asia Simulations

    Get PDF
    Past and the projected future climate change in Afghanistan has been analyzed systematically and differentiated with respect to its different climate regions to gain some first quantitative insights into Afghanistan’s vulnerability to ongoing and future climate changes. For this purpose, temperature, precipitation and five additional climate indices for extremes and agriculture assessments (heavy precipitation; spring precipitation; growing season length (GSL), the Heat Wave Magnitude Index (HWMI); and the Standardized Precipitation Evapotranspiration Index (SPEI)) from the reanalysis data were examined for their consistency to identify changes in the past (data since 1950). For future changes (up to the year 2100), the same parameters were extracted from an ensemble of 12 downscaled regional climate models (RCM) of the Coordinated Regional Climate Downscaling Experiment (CORDEX)-South Asia simulations for low and high emission scenarios (Representative Concentration Pathways 4.5 and 8.5). In the past, the climatic changes were mainly characterized by a mean temperature increase above global level of 1.8 °C from 1950 to 2010; uncertainty with regard to reanalyzed rainfall data limited a thorough analysis of past changes. Climate models projected the temperature trend to accelerate in the future, depending strongly on the global carbon emissions (2006–2050 Representative Concentration Pathways 4.5/8.5: 1.7/2.3 °C; 2006–2099: 2.7/6.4 °C, respectively). Despite the high uncertainty with regard to precipitation projections, it became apparent that the increasing evapotranspiration is likely to exacerbate Afghanistan’s already existing water stress, including a very strong increase of frequency and magnitude of heat waves. Overall, the results show that in addition to the already extensive deficiency in adaptation to current climate conditions, the situation will be aggravated in the future, particularly in regard to water management and agriculture. Thus, the results of this study underline the importance of adequate adaptation to climate change in Afghanistan. This is even truer taking into account that GSL is projected to increase substantially by around 20 days on average until 2050, which might open the opportunity for extended agricultural husbandry or even additional harvests when water resources are properly managed
    corecore