17 research outputs found

    Spectral asymmetry and Riemannian geometry. III

    Get PDF
    In Parts I and II of this paper ((4),(5)) we studied the 'spectral asymmetry' of certain elliptic self-adjoint operators arising in Riemannian geometry. More precisely, for any elliptic self-adjoint operator A on a compact manifold we defined ηA(s)=Σλ+0signλ|λ|-8, where λ runs over the eigenvalues of A. For the particular operators of interest in Riemannian geometry we showed that ηA(s) had an analytic continuation to the whole complex s-plane, with simple poles, and that s=0 was not a pole. The real number ηA(0), which is a measure of 'spectral asymmetry', was studied in detail particularly in relation to representations of the fundamental group

    Electromagnetic Casimir piston in higher dimensional spacetimes

    Full text link
    We consider the Casimir effect of the electromagnetic field in a higher dimensional spacetime of the form M×NM\times \mathcal{N}, where MM is the 4-dimensional Minkowski spacetime and N\mathcal{N} is an nn-dimensional compact manifold. The Casimir force acting on a planar piston that can move freely inside a closed cylinder with the same cross section is investigated. Different combinations of perfectly conducting boundary conditions and infinitely permeable boundary conditions are imposed on the cylinder and the piston. It is verified that if the piston and the cylinder have the same boundary conditions, the piston is always going to be pulled towards the closer end of the cylinder. However, if the piston and the cylinder have different boundary conditions, the piston is always going to be pushed to the middle of the cylinder. By taking the limit where one end of the cylinder tends to infinity, one obtains the Casimir force acting between two parallel plates inside an infinitely long cylinder. The asymptotic behavior of this Casimir force in the high temperature regime and the low temperature regime are investigated for the case where the cross section of the cylinder in MM is large. It is found that if the separation between the plates is much smaller than the size of N\mathcal{N}, the leading term of the Casimir force is the same as the Casimir force on a pair of large parallel plates in the (4+n)(4+n)-dimensional Minkowski spacetime. However, if the size of N\mathcal{N} is much smaller than the separation between the plates, the leading term of the Casimir force is 1+h/21+h/2 times the Casimir force on a pair of large parallel plates in the 4-dimensional Minkowski spacetime, where hh is the first Betti number of N\mathcal{N}. In the limit the manifold N\mathcal{N} vanishes, one does not obtain the Casimir force in the 4-dimensional Minkowski spacetime if hh is nonzero.Comment: 22 pages, 4 figure

    From simplicial Chern-Simons theory to the shadow invariant II

    Full text link
    This is the second of a series of papers in which we introduce and study a rigorous "simplicial" realization of the non-Abelian Chern-Simons path integral for manifolds M of the form M = Sigma x S1 and arbitrary simply-connected compact structure groups G. More precisely, we introduce, for general links L in M, a rigorous simplicial version WLO_{rig}(L) of the corresponding Wilson loop observable WLO(L) in the so-called "torus gauge" by Blau and Thompson (Nucl. Phys. B408(2):345-390, 1993). For a simple class of links L we then evaluate WLO_{rig}(L) explicitly in a non-perturbative way, finding agreement with Turaev's shadow invariant |L|.Comment: 53 pages, 1 figure. Some minor changes and corrections have been mad

    p-form spectra and Casimir energies on spherical tesselations

    Full text link
    Casimir energies on space-times having the fundamental domains of semi-regular spherical tesselations of the three-sphere as their spatial sections are computed for scalar and Maxwell fields. The spectral theory of p-forms on the fundamental domains is also developed and degeneracy generating functions computed. Absolute and relative boundary conditions are encountered naturally. Some aspects of the heat-kernel expansion are explored. The expansion is shown to terminate with the constant term which is computed to be 1/2 on all tesselations for a coexact 1-form and shown to be so by topological arguments. Some practical points concerning generalised Bernoulli numbers are given.Comment: 43 pages. v.ii. Puzzle eliminated, references added and typos corrected. v.iii. topological arguments included, references adde

    Spectral asymmetry and Riemannian geometry. III

    No full text
    corecore