429 research outputs found

    The Genome of a Southern Hemisphere Seagrass Species (Zostera muelleri).

    Full text link
    Seagrasses are marine angiosperms that evolved from land plants but returned to the sea around 140 million years ago during the early evolution of monocotyledonous plants. They successfully adapted to abiotic stresses associated with growth in the marine environment, and today, seagrasses are distributed in coastal waters worldwide. Seagrass meadows are an important oceanic carbon sink and provide food and breeding grounds for diverse marine species. Here, we report the assembly and characterization of the Zostera muelleri genome, a southern hemisphere temperate species. Multiple genes were lost or modified in Z. muelleri compared with terrestrial or floating aquatic plants that are associated with their adaptation to life in the ocean. These include genes for hormone biosynthesis and signaling and cell wall catabolism. There is evidence of whole-genome duplication in Z. muelleri; however, an ancient pan-commelinid duplication event is absent, highlighting the early divergence of this species from the main monocot lineages

    Bayesian paternity analysis and mating patterns in a parasitic nematode, Trichostrongylus tenuis

    Get PDF
    Mating behaviour is a fundamental aspect of the evolutionary ecology of sexually reproducing species, but one that has been under-researched in parasitic nematodes. We analysed mating behaviour in the parasitic nematode Trichostrongylus tenuis by performing a paternity analysis in a population from a single red grouse host. Paternity of the 150 larval offspring of 25 mothers (sampled from one of the two host caeca) was assigned among 294 candidate fathers (sampled from both caeca). Each candidate father's probability of paternity of each offspring was estimated from 10-locus microsatellite genotypes. Seventy-six (51%) offspring were assigned a father with a probability of >0.8, and the estimated number of unsampled males was 136 (95% credible interval (CI) 77-219). The probability of a male from one caecum fathering an offspring in the other caecum was estimated as 0.024 (95% CI 0.003-0.077), indicating that the junction of the caeca is a strong barrier to dispersal. Levels of promiscuity (defined as the probability of two of an adult's offspring sharing only one parent) were high for both sexes. Variance in male reproductive success was moderately high, possibly because of a combination of random mating and high variance in post-copulatory reproductive success. These results provide the first data on individual mating behaviour among parasitic nematodes

    Real-time PCR complements immunohistochemistry in the determination of HER-2/neu status in breast cancer

    Get PDF
    BACKGROUND: The clinical benefit of determining the status of HER-2/neu amplification in breast cancer patients is well accepted. Although immunohistochemistry (IHC) is the most frequently used method to assess the over-expression of HER-2 protein, fluorescent in-situ hybridization (FISH) is recognized as the "gold standard" for the determining of HER-2/neu status. The greatest discordance between the two methods occurs among breast tumors that receive an indeterminate IHC score of 2+. More recently, a real-time polymerase chain reaction (PCR) assay using the LightCycler(® )has been developed for quantifying HER-2/neu gene amplification. In this study, we evaluated the sensitivity and specificity of a commercially available LightCycler assay as it compares to FISH. To determine whether this assay provides an accurate alternative for the determination of HER-2/neu status, we focused primarily on tumors that were deemed indeterminate or borderline status by IHC. METHODS: Thirty-nine breast tumors receiving an IHC score of 2+ were evaluated by both FISH and LightCycler(® )technologies in order to determine whether quantitative real-time PCR provides an accurate alternative for the determination of HER-2/neu status. RESULTS: We found a high concordance (92%) between FISH and real-time PCR results. We also observed that 10% of these tumors were positive for gene amplification by both FISH and real-time PCR. CONCLUSION: The data show that the results obtained for the gene amplification of HER-2/neu by real-time PCR on the LightCycler(® )instrument is comparable to results obtained by FISH. These results therefore suggest that real-time PCR analysis, using the LightCycler(®), is a viable alternative to FISH for reassessing breast tumors which receive an IHC score of 2+, and that a combined IHC and real-time PCR approach for the determination of HER-2 status in breast cancer patients may be an effective and efficient strategy

    Diversification and Specialization of Plant RBR Ubiquitin Ligases

    Get PDF
    Background: RBR ubiquitin ligases are components of the ubiquitin-proteasome system present in all eukaryotes. They are characterized by having the RBR (RING – IBR – RING) supradomain. In this study, the patterns of emergence of RBR genes in plants are described. Methodology/Principal Findings: Phylogenetic and structural data confirm that just four RBR subfamilies (Ariadne, ARA54, Plant I/Helicase and Plant II) exist in viridiplantae. All of them originated before the split that separated green algae from the rest of plants. Multiple genes of two of these subfamilies (Ariadne and Plant II) appeared in early plant evolution. It is deduced that the common ancestor of all plants contained at least five RBR genes and the available data suggest that this number has been increasing slowly along streptophyta evolution, although losses, especially of Helicase RBR genes, have also occurred in several lineages. Some higher plants (e. g. Arabidopsis thaliana, Oryza sativa) contain a very large number of RBR genes and many of them were recently generated by tandem duplications. Microarray data indicate that most of these new genes have low-level and sometimes specific expression patterns. On the contrary, and as occurs in animals, a small set of older genes are broadly expressed at higher levels. Conclusions/Significance: The available data suggests that the dynamics of appearance and conservation of RBR genes is quite different in plants from what has been described in animals. In animals, an abrupt emergence of many structurall

    Development and optimization of quantitative PCR for the diagnosis of invasive aspergillosis with bronchoalveolar lavage fluid

    Get PDF
    Background: The diagnosis of invasive pulmonary aspergillosis (IPA) remains challenging. Culture and histopathological examination of bronchoalveolar lavage (BAL) fluid are useful but have suboptimal sensitivity and in the case of culture may require several days for fungal growth to be evident. Detection of Aspergillus DNA in BAL fluid by quantitative PCR (qPCR) offers the potential for earlier diagnosis and higher sensitivity. It is important to adopt quality control measures in PCR assays to address false positives and negatives which can hinder accurate evaluation of diagnostic performance. Methods: BAL fluid from 94 episodes of pneumonia in 81 patients was analyzed. Thirteen episodes were categorized as proven or probable IPA using Mycoses Study Group criteria. The pellet and the supernatant fractions of the BAL were separately assayed. A successful extraction was confirmed with a human 18S rRNA gene qPCR. Inhibition in each qPCR was measured using an exogenous DNA based internal amplification control (IAC). The presence of DNA from pathogens in the Aspergillus genus was detected using qPCR targeting fungal 18S rRNA gene. Results: Human 18S rRNA gene qPCR confirmed successful DNA extraction of all samples. IAC detected some degree of initial inhibition in 11 samples. When culture was used to diagnose IPA, the sensitivity and specificity were 84.5% and 100% respectively. Receiver-operating characteristic analysis of qPCR showed that a cutoff of 13 fg of Aspergillus genomic DNA generated a sensitivity, specificity, positive and negative predictive value of 77%, 88%, 50%, 96% respectively. BAL pellet and supernatant analyzed together resulted in sensitivity and specificity similar to BAL pellet alone. Some patients did not meet standard criteria for IPA, but had consistently high levels of Aspergillus DNA in BAL fluid by qPCR. Conclusion: The Aspergillus qPCR assay detected Aspergillus DNA in 76.9% of subjects with proven or probable IPA when the concentrated BAL fluid pellet fraction was used for diagnosis. There was no benefit from analyzing the BAL supernatant fraction. Use of both extraction and amplification controls provided optimal quality control for interpreting qPCR results and therefore may increase our understanding of the true potential of qPCR for the diagnosis of IPA.Supported by NIH grant R01 AI054703 from the National Institute of Allergy and Infectious Diseases

    Cereal Domestication and Evolution of Branching: Evidence for Soft Selection in the Tb1 Orthologue of Pearl Millet (Pennisetum glaucum [L.] R. Br.)

    Get PDF
    BACKGROUND: During the Neolithic revolution, early farmers altered plant development to domesticate crops. Similar traits were often selected independently in different wild species; yet the genetic basis of this parallel phenotypic evolution remains elusive. Plant architecture ranks among these target traits composing the domestication syndrome. We focused on the reduction of branching which occurred in several cereals, an adaptation known to rely on the major gene Teosinte-branched1 (Tb1) in maize. We investigate the role of the Tb1 orthologue (Pgtb1) in the domestication of pearl millet (Pennisetum glaucum), an African outcrossing cereal. METHODOLOGY/PRINCIPAL FINDINGS: Gene cloning, expression profiling, QTL mapping and molecular evolution analysis were combined in a comparative approach between pearl millet and maize. Our results in pearl millet support a role for PgTb1 in domestication despite important differences in the genetic basis of branching adaptation in that species compared to maize (e.g. weaker effects of PgTb1). Genetic maps suggest this pattern to be consistent in other cereals with reduced branching (e.g. sorghum, foxtail millet). Moreover, although the adaptive sites underlying domestication were not formerly identified, signatures of selection pointed to putative regulatory regions upstream of both Tb1 orthologues in maize and pearl millet. However, the signature of human selection in the pearl millet Tb1 is much weaker in pearl millet than in maize. CONCLUSIONS/SIGNIFICANCE: Our results suggest that some level of parallel evolution involved at least regions directly upstream of Tb1 for the domestication of pearl millet and maize. This was unanticipated given the multigenic basis of domestication traits and the divergence of wild progenitor species for over 30 million years prior to human selection. We also hypothesized that regular introgression of domestic pearl millet phenotypes by genes from the wild gene pool could explain why the selective sweep in pearl millet is softer than in maize

    Environmental noise reduces predation rate in an aquatic invertebrate

    Get PDF
    Noise is one of a wide range of disturbances associated with human activities that have been shown to have detrimental impacts on a wide range of species, from montane regions to the deep marine environment. Noise may also have community-level impacts via predator–prey interactions, thus jeopardising the stability of trophic networks. However, the impact of noise on freshwater ecosystems is largely unknown. Even more so is the case of insects, despite their crucial role in trophic networks. Here, we study the impact of underwater noise on the predatory functional response of damselfly larvae. We compared the feeding rates of larvae under anthropogenic noise, natural noise, and silent conditions. Our results suggest that underwater noise (pooling the effects of anthropogenic noise and natural noise) decreases the feeding rate of damselflies significantly compared to relatively silent conditions. In particular, natural noise increased the handling time significantly compared to the silent treatment, thus reducing the feeding rate. Unexpectedly, feeding rates under anthropogenic noise were not reduced significantly compared to silent conditions. This study suggests that noise per se may not necessarily have negative impacts on trophic interactions. Instead, the impact of noise on feeding rates may be explained by the presence of nonlinearities in acoustic signals, which may be more abundant in natural compared to anthropogenic noise. We conclude by highlighting the importance of studying a diversity of types of acoustic pollution, and encourage further work regarding trophic interactions with insects using a functional response approach

    Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC)

    Get PDF
    The genome sequences of two Escherichia coli O104:H4 strains derived from two different patients of the 2011 German E. coli outbreak were determined. The two analyzed strains were designated E. coli GOS1 and GOS2 (German outbreak strain). Both isolates comprise one chromosome of approximately 5.31 Mbp and two putative plasmids. Comparisons of the 5,217 (GOS1) and 5,224 (GOS2) predicted protein-encoding genes with various E. coli strains, and a multilocus sequence typing analysis revealed that the isolates were most similar to the entero-aggregative E. coli (EAEC) strain 55989. In addition, one of the putative plasmids of the outbreak strain is similar to pAA-type plasmids of EAEC strains, which contain aggregative adhesion fimbrial operons. The second putative plasmid harbors genes for extended-spectrum β-lactamases. This type of plasmid is widely distributed in pathogenic E. coli strains. A significant difference of the E. coli GOS1 and GOS2 genomes to those of EAEC strains is the presence of a prophage encoding the Shiga toxin, which is characteristic for enterohemorrhagic E. coli (EHEC) strains. The unique combination of genomic features of the German outbreak strain, containing characteristics from pathotypes EAEC and EHEC, suggested that it represents a new pathotype Entero-Aggregative-Haemorrhagic Escherichiacoli (EAHEC)
    corecore