1,604 research outputs found

    Brassica genomics: a complement to, and early beneficiary of, the Arabidopsis sequence.

    Get PDF
    Those studying the genus Brassica will be among the early beneficiaries of the now-completed Arabidopsis sequence. The remarkable morphological diversity of Brassica species and their relatives offers valuable opportunities to advance our knowledge of plant growth and development, and our understanding of rapid phenotypic evolution

    Introducing a nonvolatile N-type dopant drastically improves electron transport in polymer and small-molecule organic transistors

    Get PDF
    KGaA, Weinheim Molecular doping is a powerful yet challenging technique for enhancing charge transport in organic semiconductors (OSCs). While there is a wealth of research on p-type dopants, work on their n-type counterparts is comparatively limited. Here, reported is the previously unexplored n-dopant (12a,18a)-5,6,12,12a,13,18,18a,19-octahydro-5,6-dimethyl- 13,18[1′,2′]-benzenobisbenzimidazo [1,2-b:2′,1′-d]benzo[i][2.5]benzodiazo-cine potassium triflate adduct (DMBI-BDZC) and its application in organic thin-film transistors (OTFTs). Two different high electron mobility OSCs, namely, the polymer poly[[N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8- bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2′-bithiophene)] and a small-molecule naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malononitrile groups (NDI-DTYM2) are used to study the effectiveness of DMBI-BDZC as a n-dopant. N-doping of both semiconductors results in OTFTs with improved electron mobility (up to 1.1 cm2 V−1 s−1), reduced threshold voltage and lower contact resistance. The impact of DMBI-BDZC incorporation is particularly evident in the temperature dependence of the electron transport, where a significant reduction in the activation energy due to trap deactivation is observed. Electron paramagnetic resonance measurements support the n-doping activity of DMBI-BDZC in both semiconductors. This finding is corroborated by density functional theory calculations, which highlights ground-state electron transfer as the main doping mechanism. The work highlights DMBI-BDZC as a promising n-type molecular dopant for OSCs and its application in OTFTs, solar cells, photodetectors, and thermoelectrics

    How the vertebrates were made: selective pruning of a double-duplicated genome

    Get PDF
    Vertebrates are the result of an ancient double duplication of the genome. A new study published in BMC Biology explores the selective retention of genes after this event, finding an extensive enrichment of signaling proteins and transcription factors. Analysis of their expression patterns, interactions and subsequent history reflect the forces that drove their evolution, and with it the evolution of vertebrate complexity

    Toward a Unified Genetic Map of Higher Plants, Transcending the Monocot-Dicot Divergence

    Get PDF
    Closely related (confamilial) genera often retain large chromosomal tracts in which gene order is colinear, punctuated by structural mutations such as inversions and translocations 1. To explore the possibility that conservation of gene order might extrapolate to more distantly related taxa, we first estimated an average structural mutation rate. Nine pairs of taxa, for which there exist both comparative genetic maps and plausible estimates of divergence time, showed an average of0.14 (±0.06) structural mutations per chromosome per million years of divergence (Myr; Table 1). This value is offered as a first approximation, acknowledging that refined comparative data and/or divergence estimates may impel revision

    The Genome of a Southern Hemisphere Seagrass Species (Zostera muelleri).

    Full text link
    Seagrasses are marine angiosperms that evolved from land plants but returned to the sea around 140 million years ago during the early evolution of monocotyledonous plants. They successfully adapted to abiotic stresses associated with growth in the marine environment, and today, seagrasses are distributed in coastal waters worldwide. Seagrass meadows are an important oceanic carbon sink and provide food and breeding grounds for diverse marine species. Here, we report the assembly and characterization of the Zostera muelleri genome, a southern hemisphere temperate species. Multiple genes were lost or modified in Z. muelleri compared with terrestrial or floating aquatic plants that are associated with their adaptation to life in the ocean. These include genes for hormone biosynthesis and signaling and cell wall catabolism. There is evidence of whole-genome duplication in Z. muelleri; however, an ancient pan-commelinid duplication event is absent, highlighting the early divergence of this species from the main monocot lineages

    Modes of Gene Duplication Contribute Differently to Genetic Novelty and Redundancy, but Show Parallels across Divergent Angiosperms

    Get PDF
    BACKGROUND: Both single gene and whole genome duplications (WGD) have recurred in angiosperm evolution. However, the evolutionary effects of different modes of gene duplication, especially regarding their contributions to genetic novelty or redundancy, have been inadequately explored. RESULTS: In Arabidopsis thaliana and Oryza sativa (rice), species that deeply sample botanical diversity and for which expression data are available from a wide range of tissues and physiological conditions, we have compared expression divergence between genes duplicated by six different mechanisms (WGD, tandem, proximal, DNA based transposed, retrotransposed and dispersed), and between positional orthologs. Both neo-functionalization and genetic redundancy appear to contribute to retention of duplicate genes. Genes resulting from WGD and tandem duplications diverge slowest in both coding sequences and gene expression, and contribute most to genetic redundancy, while other duplication modes contribute more to evolutionary novelty. WGD duplicates may more frequently be retained due to dosage amplification, while inferred transposon mediated gene duplications tend to reduce gene expression levels. The extent of expression divergence between duplicates is discernibly related to duplication modes, different WGD events, amino acid divergence, and putatively neutral divergence (time), but the contribution of each factor is heterogeneous among duplication modes. Gene loss may retard inter-species expression divergence. Members of different gene families may have non-random patterns of origin that are similar in Arabidopsis and rice, suggesting the action of pan-taxon principles of molecular evolution. CONCLUSION: Gene duplication modes differ in contribution to genetic novelty and redundancy, but show some parallels in taxa separated by hundreds of millions of years of evolution

    Physical mapping integrated with syntenic analysis to characterize the gene space of the long arm of wheat chromosome 1A

    Get PDF
    Background: Bread wheat (Triticum aestivum L.) is one of the most important crops worldwide and its production faces pressing challenges, the solution of which demands genome information. However, the large, highly repetitive hexaploid wheat genome has been considered intractable to standard sequencing approaches. Therefore the International Wheat Genome Sequencing Consortium (IWGSC) proposes to map and sequence the genome on a chromosome-by-chromosome basis. Methodology/Principal Findings: We have constructed a physical map of the long arm of bread wheat chromosome 1A using chromosome-specific BAC libraries by High Information Content Fingerprinting (HICF). Two alternative methods (FPC and LTC) were used to assemble the fingerprints into a high-resolution physical map of the chromosome arm. A total of 365 molecular markers were added to the map, in addition to 1122 putative unique transcripts that were identified by microarray hybridization. The final map consists of 1180 FPC based or 583 LTC based contigs. Conclusions/Significance: The physical map presented here marks an important step forward in mapping of hexaploid bread wheat. The map is orders of magnitude more detailed than previously available maps of this chromosome, and the assignment of over a thousand putative expressed gene sequences to specific map locations will greatly assist future functional studies. This map will be an essential tool for future sequencing of and positional cloning within chromosome 1A

    An interspecific linkage map of SSR and intronic polymorphism markers in tomato

    Get PDF
    Despite the collection and availability of abundant tomato genome sequences, PCR-based markers adapted to large scale analysis have not been developed in tomato species. Therefore, using public genome sequence data in tomato, we developed three types of DNA markers: expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers (TES markers), genome-derived SSR markers (TGS markers) and EST-derived intronic polymorphism markers (TEI markers). A total of 2,047 TES, 3,510 TGS and 674 TEI markers were established and used in the polymorphic analysis of a cultivated tomato (Solanum lycopersicum) ‘LA925’ and its wild relative Solanum pennellii ‘LA716’, parents of the Tomato-EXPEN 2000 mapping population. The polymorphic ratios between parents revealed by the TES, TGS and TEI markers were 37.3, 22.6 and 80.0%, respectively. Those showing polymorphisms were used to genotype the Tomato-EXPEN 2000 mapping population, and a high-density genetic linkage map composed of 1,433 new and 683 existing marker loci was constructed on 12 chromosomes, covering 1,503.1 cM. In the present map, 48% of the mapped TGS loci were located within heterochromatic regions, while 18 and 21% of TES and TEI loci, respectively, were located in heterochromatin. The large number of SSR and SNP markers developed in this study provide easily handling genomic tools for molecular breeding in tomato. Information on the DNA markers developed in this study is available at http://www.kazusa.or.jp/tomato/

    A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, <it>Arabidopsis thaliana</it>, provides means to explore their genomic complexity.</p> <p>Results</p> <p>A genome-wide physical map of a rapid-cycling strain of <it>B. oleracea </it>was constructed by integrating high-information-content fingerprinting (HICF) of Bacterial Artificial Chromosome (BAC) clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences) to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of <it>B. oleracea </it>and <it>Arabidopsis thaliana</it>, a relatively high level of genomic change since their divergence. Comparison of the <it>B. oleracea </it>physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity.</p> <p>Conclusions</p> <p>A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes.</p> <p>All the physical mapping data is freely shared at a WebFPC site (<url>http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/</url>; Temporarily password-protected: account: pgml; password: 123qwe123.</p
    corecore