442 research outputs found

    Impact of amoxicillin-clavulanate followed by autologous fecal microbiota transplantation on fecal microbiome structure and metabolic potential

    Get PDF
    The spread of multidrug resistance among pathogenic organisms threatens the efficacy of antimicrobial treatment options. The human gut serves as a reservoir for many drug-resistant organisms and their resistance genes, and perturbation of the gut microbiome by antimicrobial exposure can open metabolic niches to resistant pathogens. Once established in the gut, antimicrobial-resistant bacteria can persist even after antimicrobial exposure ceases. Strategies to prevent multidrug-resistant organism (MDRO) infections are scarce, but autologous fecal microbiota transplantation (autoFMT) may limit gastrointestinal MDRO expansion. AutoFMT involves banking one’s feces during a healthy state for later use in restoring gut microbiota following perturbation. This pilot study evaluated the effect of amoxicillin-clavulanic acid (Amox-Clav) exposure and autoFMT on gastrointestinal microbiome taxonomic composition, resistance gene content, and metabolic capacity. Importantly, we found that metabolic capacity was perturbed even in cases where gross phylogeny remained unchanged and that autoFMT was safe and well tolerated.Strategies to prevent multidrug-resistant organism (MDRO) infections are scarce, but autologous fecal microbiota transplantation (autoFMT) may limit gastrointestinal MDRO expansion. AutoFMT involves banking one’s feces during a healthy state for later use in restoring gut microbiota following perturbation. This pilot study evaluated the effect of autoFMT on gastrointestinal microbiome taxonomic composition, resistance gene content, and metabolic capacity after exposure to amoxicillin-clavulanic acid (Amox-Clav). Ten healthy participants were enrolled. All received 5 days of Amox-Clav. Half were randomized to autoFMT, derived from stool collected pre-antimicrobial exposure, by enema, and half to saline enema. Participants submitted stool samples pre- and post-Amox-Clav and enema and during a 90-day follow-up period. Shotgun metagenomic sequencing revealed taxonomic composition, resistance gene content, and metabolic capacity. Amox-Clav significantly altered gut taxonomic composition in all participants (n = 10, P  0.05, compared to enrollment). Alterations to microbial metabolic capacity occurred following antimicrobial exposure even in participants without substantial taxonomic disruption, potentially creating open niches for pathogen colonization. Our findings suggest that metabolic potential is an important consideration for complete assessment of antimicrobial impact on the microbiome. AutoFMT was well tolerated and may have contributed to phylogenetic recovery. (This study has been registered at ClinicalTrials.gov under identifier NCT02046525.

    Climate of the Field: Snowmass 2021

    Full text link
    How are formal policies put in place to create an inclusive, equitable, safe environment? How do these differ between different communities of practice (institutions, labs, collaborations, working groups)? What policies towards a more equitable community are working? For those that aren't working, what external support is needed in order to make them more effective? We present a discussion of the current climate of the field in high energy particle physics and astrophysics (HEPA), as well as current efforts toward making the community a more diverse, inclusive, and equitable environment. We also present issues facing both institutions and HEPA collaborations, with a set of interviews with a selection of HEPA collaboration DEI leaders. We encourage the HEPA community and the institutions & agencies that support it to think critically about the prioritization of people in HEPA over the coming decade, and what resources and policies need to be in place in order to protect and elevate minoritized populations within the HEPA community.Comment: Contribution to Snowmass 202

    Constructing Globular, Sheeted, and Helical Polyalanine Structures using Nanotubes as Templates for Computational Studies

    Get PDF
    In this experiment polyalanine was folded into globular, sheeted, and helical structures through the use of carbon nanotubes. The rigidity of the nanotubes allowed for molding the polyalanine into the various structures. Nanotubes of different diameters and volumes were used in this experiment. Once the three dimensional peptide structures were formed and detached from the carbon nanotubes, a number of thermodynamic calculations were performed. Computational meth­ods were used to calculate parameters such as Gibbs free energy, enthalpy, entropy, and molecular volume. By attaining the measure­ments of the phi and psi angles, Ramachandran plots were constructed using linear, globular, sheeted, and helical protein structures

    Sprouty2 in the Dorsal Hippocampus Regulates Neurogenesis and Stress Responsiveness in Rats

    Get PDF
    Both the development and relief of stress-related psychiatric conditions such as major depression (MD) and post-traumatic stress disorder (PTSD) have been linked to neuroplastic changes in the brain. One such change involves the birth of new neurons (neurogenesis), which occurs throughout adulthood within discrete areas of the mammalian brain, including the dorsal hippocampus (HIP). Stress can trigger MD and PTSD in humans, and there is considerable evidence that it can decrease HIP neurogenesis in laboratory animals. In contrast, antidepressant treatments increase HIP neurogenesis, and their efficacy is eliminated by ablation of this process. These findings have led to the working hypothesis that HIP neurogenesis serves as a biomarker of neuroplasticity and stress resistance. Here we report that local alterations in the expression of Sprouty2 (SPRY2), an intracellular inhibitor of growth factor function, produces profound effects on both HIP neurogenesis and behaviors that reflect sensitivity to stressors. Viral vector-mediated disruption of endogenous Sprouty2 function (via a dominant negative construct) within the dorsal HIP of adult rats stimulates neurogenesis and produces signs of stress resilience including enhanced extinction of conditioned fear. Conversely, viral vector-mediated elevation of SPRY2 expression intensifies the behavioral consequences of stress. Studies of these manipulations in HIP primary cultures indicate that SPRY2 negatively regulates fibroblast growth factor-2 (FGF2), which has been previously shown to produce antidepressant- and anxiolytic-like effects via actions in the HIP. Our findings strengthen the relationship between HIP plasticity and stress responsiveness, and identify a specific intracellular pathway that could be targeted to study and treat stress-related disorders

    Australia and New Zealand renal gene panel testing in routine clinical practice of 542 families

    Get PDF
    Genetic testing in nephrology clinical practice has moved rapidly from a rare specialized test to routine practice both in pediatric and adult nephrology. However, clear information pertaining to the likely outcome of testing is still missing. Here we describe the experience of the accredited Australia and New Zealand Renal Gene Panels clinical service, reporting on sequencing for 552 individuals from 542 families with suspected kidney disease in Australia and New Zealand. An increasing number of referrals have been processed since service inception with an overall diagnostic rate of 35%. The likelihood of identifying a causative variant varies according to both age at referral and gene panel. Although results from high throughput genetic testing have been primarily for diagnostic purposes, they will increasingly play an important role in directing treatment, genetic counseling, and family planning

    BALR-6 regulates cell growth and cell survival in B-lymphoblastic leukemia

    Get PDF
    BackgroundA new class of non-coding RNAs, known as long non-coding RNAs (lncRNAs), has been recently described. These lncRNAs are implicated to play pivotal roles in various molecular processes, including development and oncogenesis. Gene expression profiling of human B-ALL samples showed differential lncRNA expression in samples with particular cytogenetic abnormalities. One of the most promising lncRNAs identified, designated B-ALL associated long RNA-6 (BALR-6), had the highest expression in patient samples carrying the MLL rearrangement, and is the focus of this study.ResultsHere, we performed a series of experiments to define the function of BALR-6, including several novel splice forms that we identified. Functionally, siRNA-mediated knockdown of BALR-6 in human B-ALL cell lines caused reduced cell proliferation and increased cell death. Conversely, overexpression of BALR-6 isoforms in both human and mouse cell lines caused increased proliferation and decreased apoptosis. Overexpression of BALR-6 in murine bone marrow transplantation experiments caused a significant increase in early hematopoietic progenitor populations, suggesting that its dysregulation may cause developmental changes. Notably, the knockdown of BALR-6 resulted in global dysregulation of gene expression. The gene set was enriched for leukemia-associated genes, as well as for the transcriptome regulated by Specificity Protein 1 (SP1). We confirmed changes in the expression of SP1, as well as its known interactor and downstream target CREB1. Luciferase reporter assays demonstrated an enhancement of SP1-mediated transcription in the presence of BALR-6. These data provide a putative mechanism for regulation by BALR-6 in B-ALL.ConclusionsOur findings support a role for the novel lncRNA BALR-6 in promoting cell survival in B-ALL. Furthermore, this lncRNA influences gene expression in B-ALL in a manner consistent with a function in transcriptional regulation. Specifically, our findings suggest that BALR-6 expression regulates the transcriptome downstream of SP1, and that this may underlie the function of BALR-6 in B-ALL

    Policy Review: Addressing the Complex Challenges of Regulating Biotherapeutics

    Get PDF
    The advancing industry of biotherapeutics is providing the public with new promising and innovative drugs which may pose risks if their production, distribution, and marketing are not directly governed by legislation. Apart from international agreements, such as the Cartagena Protocol, there are no specific and direct laws or regulations governing manipulated cell-based therapeutics in Canada. The introduction of these laws and regulations in Canada will allow for the safe research and use of biotherapeutics in a proactive manner
    • …
    corecore