391 research outputs found

    Centroid and moments of an area using a digitizer

    Get PDF
    The centroid and moments of an area program provides the centroid, moments of inertia, product of inertia, radii of gyration, and area of any closed planar geometric figure. The figure must be available in graphic form and is digitized once with chart digitizer (graphic tablet). The digitizer origin may be set anywhere on the digitizer table. After digitizing, fifteen quantities are calculated and displayed: (1) area (2) moment of inertia of area with respect to digitizer x-axis, (3) moment of inertia of area with respect to digitizer y-axis, (4) product of inertia of area with respect to digitizer axes, (5) first moment of x for digitizer axes, (6) first moment of y for digitizer axes, (7) x coordinate of centroid, (8) y coordinate of centroid, (9) moment of area inertia of with respect to x axis through centroid, (10) moment of inertia of area with respect to y axis through centroid, (11) product inertia of area with respect to x and y axes through centroid, (12) polar moment of inertia of area around centroid, (13) radius of gyration about digitizer x axis, (14) radius of gyration about digitizer y-axis; and (15) variance in the x-direction

    Reduction of particulate carryover from a pressurized fluidized bed

    Get PDF
    A bench scale fluidized bed combustor was constructed with a conical shape so that the enlarged upper part of the combustor would also serve as a granular bed filter. The combustor was fed coal and limestone. Ninety-nine tests of about four hours each were conducted over a range of conditions. Coal-to-air ratio varied from 0.033 to 0.098 (all lean). Limestone-to-coal ratio varied from 0.06 to 0.36. Bed depth varied from 3.66 to 8.07 feet. Temperature varied from 1447 to 1905 F. Pressure varied from 40 to 82 psia. Heat transfer area had the range zero to 2.72 ft squared. Two cone angles were used. The average particulate carry over of 2.5 grains/SCF was appreciably less than cylindrical fluidized bed combustors. The carry over was correlated by multiple regression analysis to yield the dependence on bed depth and hence the collection efficiency, which was 20%. A comparison with a model indicated that the exhaust port may be below the transport disengaging height for most of the tests, indicating that further reduction in carry over and increase in collection efficiency could be affected by increasing the freeboard and height of the exhaust port above the bed

    Ion temperatures in HIP-1 and SUMMA from charge-exchange neutral optical emission spectra

    Get PDF
    Ion temperatures were obtained from observations of the H sub alpha, D sub alpha, and He 587.6 nm lines emitted from hydrogen, deuterium, and helium plasmas in the SUMMA and HIP-1 mirror devices at Lewis Research Center. Steady state discharges were formed by applying a radially inward dc electric field between cylindrical or annular anodes and hollow cathodes located at the peaks of the mirrors. The ion temperatures were found from the Doppler broadening of the charge-exchange components of spectral lines. A statistical method was developed for obtaining scaling relations of ion temperature as a function of current, voltage, and magnetic flux density. Derivations are given that take into account triangular monochromator slit functions, loss cones, and superimposed charge-exchange processes. In addition, the Doppler broadening was found to be sensitive to the influence of drift on charge-exchange cross section. The effects of finite ion-cyclotron radius, cascading, and delayed emission are reviewed

    Low-cost, compact, cooled photomultiplier assembly for use in magnetic fields up to 1400 Gauss

    Get PDF
    Use of vortex tube for cooling and concentric shielding have produced smaller and more compact unit than was previously available. Future uses of device could include installation in gas chromatographs and mass spectrometers. Additional uses would include measurements and controls in magnetohydrodynamic power generators and fusion reactors

    Parametric dependence of ion temperature and relative density in the NASA Lewis SUMMA facility

    Get PDF
    Further hot-ion plasma experiments were conducted in the SUMMA superconducting magnetic mirror facility. A steady-state ExB plasma was formed by applying a strong radially inward dc electric field between cylindrical anodes and hollow cathodes located near the magnetic mirror maxima. Extending the use of water cooling to the hollow cathodes, in addition to the anodes, resulted in higher maximum power input to the plasma. Steady-state hydrogen plasmas with ion kinetic temperatures as high as 830 eV were produced. Functional relations were obtained empirically among the plasma current, voltage, magnetic flux density, ion temperature, and relative ion density. The functional relations were deduced by use of a multiple correlation analysis. Data were obtained for midplane magnetic fields from 0.5 to 3.37 tesla and input power up to 45 kW. Also, initial absolute electron density measurements are reported from a 90 deg Thomson scattering laser system

    Preliminary comparison of theory and experiment for a conical, pressurized-fluidized-bed coal combustor

    Get PDF
    A published model was used for a comparison of theory with an actual combustor burning caking bituminous coal and using limestone to reduce sulfur dioxide emission. Theoretical bed pressure drop was in good agreement with experiment. The burnable carbon elutriated was not in agreement with experiment, at least partly because the exhaust port was apparently below the transport disengaging height. The observed nitrogen oxides emission rate was about half the theoretical value. There was order-or-magnitude agreement of sulfur dioxide emission rates

    SUMMA hot-ion plasma heating research at NASA Lewis Research Center

    Get PDF
    The SUMMA superconducting magnetic mirror facility and the associated hot-ion plasma research were described. SUMMA is characterized by intense magnetic fields and a large-diameter working bore (41 cm diameter) with room-temperature access. The goal of the plasma research program is to produce steady-state plasmas of fusion reactor densities and temperatures (but not confinement times). The program includes electrode development to produce a hot, dense, large-volume, steady-state plasma and diagnostics development to document the plasma properties. SUMMA and its hot-ion plasma are ideally suited to develop advanced plasma diagnostics methods. Two such methods whose requirements are well matched to SUMMA are: (1) heavy ion beam probing to measure plasma space potential; and (2) submillimeter wavelength laser Thomson scattering to measure local ion temperature

    Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    Get PDF
    A steady-state ExB plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasma with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage. Neutrons were produced from deuterium plasma, but it was not established whether thay came from the plasma volume or from the electrode surfaces

    Ion and electron temperatures in the SUMMA mirror device by emission spectroscopy

    Get PDF
    Ion and electron temperatures, and ion drift were measured in a superconducting magnetic mirror apparatus by observing the Doppler-broadened charge-exchange component of the 667.8 and 587.6 nanometer He lines in He plasma, and the H sub alpha and H sub beta lines in H2 plasma. The second moment of the line profiles was used as the parameter for determining ion temperature. Corrections for magnetic splitting, fine structure, monochromator slit function, and variation in charge-exchange cross section with energy are included. Electron temperatures were measured by the line ratio method for the corona model, and correlations of ion and electron temperatures with plasma parameters are presented
    corecore