30 research outputs found

    Microbial synthesis of silver nanoparticles by streptomyces glaucus and spirulina platensis

    Get PDF
    Microbial synthesis of nanoparticles has a potential to develop simple, costeffective and eco-friendly methods for production of technologically important materials. In this study, for the first time a novelactinomycete strain Streptomyces glaucus71 MD isolated from a soy rhizosphere in Georgiais for the first time extensively characterized and utilized for the synthesis of silver nanoparticles. Scanning Electron Microscope (SEM) allowed observing extracellular synthesis of nanoparticles, which has many advantages from the point of view of applications. Production of silver nanoparticles proceeded extracellularlywith the participation of another microorganism, bluegreen microalgae Spirulinaplatensis (S. platensis). In this study it is shown that the production rate of the nanoparticles depends not only on the initial concentration of AgNO3 but also varies with time in a nonmonotonic way. SEM study of silver nanoparticles remaining on the surface of microalgae revealed that after 1 day of exposure to 1 mM AgNO3 nanoparticles were arranged as long aggregates along S. platensiscells strongly damaged by silver ions. However, after 5 days of exposure to silver S. platensiscells looked completely recovered and the nanoparticles were distributed more uniformly on the surface of the cells. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2067

    The spark-associated soliton model for pulsar radio emission

    Get PDF
    We propose a new, self-consistent theory of coherent pulsar radio emission based on the non-stationary sparking model of Ruderman & Sutherland (1975), modified by Gil & Sendyk (2000) in the accompanying Paper I. According to these authors, the polar cap is populated as densely as possible by a number of sparks with a characteristic perpendicular dimension D approximately equal to the polar gap height scale h, separated from each other also by about h. Each spark reappears in approximately the same place on the polar cap for a time scale much longer than its life-time and delivers to the open magnetosphere a sequence of electron-positron clouds which flow orderly along a flux tube of dipolar magnetic field lines. The overlapping of particles with different momenta from consecutive clouds leads to effective two-stream instability, which triggers electrostatic Langmuir waves at the altitudes of about 50 stellar radii. The electrostatic oscillations are modulationally unstable and their nonlinear evolution results in formation of ``bunch-like'' charged solitons. A characteristic soliton length along magnetic field lines is about 30 cm, so they are capable of emitting coherent curvature radiation at radio wavelengths. The net soliton charge is about 10^21 fundamental charges, contained within a volume of about 10^14 cm^3. For a typical pulsar, there are about 10^5 solitons associated with each of about 25 sparks operating on the polar cap at any instant. One soliton moving relativisticaly along dipolar field lines with a Lorentz factor of the order of 100 generates a power of about 10^21 erg/s by means of curvature radiation. Then the total power of a typical radio pulsar can be estimated as being about 10^(27-28) erg/s.Comment: 27 pages, 5 figures, accepted by Ap

    MERCURY ADSORPTION BY ARTHOBACTER GLOBIFORMIS AND SPIRULINA PLATENSIS

    Get PDF
    Abstract. The increasing contamination of soil, sediment, and water with heavy metals by natural and industrial processes is a worldwide problem. Many bacteria and microalgae have demonstrated ability to absorb toxic elements. To study mercury biosorption by bacteria Arthrobacter globiformis and microalga Spirulina platensis neutron activation analysis (NAA) was applied. The process of mercury biosorption by these media was described by Freundlich and Langmuir-Freundlich Model. Both microorganisms showed a great potential to be used as biosorbing agents for mercury removal from the environment

    Non-linear dynamo waves in an incompressible medium when the turbulence dissipative coefficients depend on temperature

    No full text
    Non-linear α-ω; dynamo waves existing in an incompressible medium with the turbulence dissipative coefficients depending on temperature are studied in this paper. We investigate of α-ω solar non-linear dynamo waves when only the first harmonics of magnetic induction components are included. If we ignore the second harmonics in the non-linear equation, the turbulent magnetic diffusion coefficient increases together with the temperature, the coefficient of turbulent viscosity decreases, and for an interval of time the value of dynamo number is greater than 1. In these conditions a stationary solution of the non-linear equation for the dynamo wave's amplitude exists; meaning that the magnetic field is sufficiently excited. The amplitude of the dynamo waves oscillates and becomes stationary. Using these results we can explain the existence of Maunder's minimum
    corecore