29 research outputs found

    Spectroscopic Methods For Lubricant Quality Control In Engines And Gear Boxes

    Get PDF
    Lubricants play a vital role in reducing the wear and tear of engine/gear box metal parts. Number of analytical and spectroscopic methods have been used to analyze the quality of the lubricant oil. Moreover some parameters such as Total Acid Number (TAN), viscosity index also have been used to analyze the quality of the oil. Several used wind turbine gear oil samples were analyzed by various spectroscopic methods such as UV-Visible, Fourier-transform infrared (FTIR) and Fluorescence Spectroscopy. Fluorescence method gave promising results among those three spectroscopic methods. In order to study thermal degradation, motor oil samples were subjected to artiļ¬cial aging in the laboratory conditions by heating them up to different temperatures for different time periods and then subsequently analyzed with fluorescence spectroscopic method. Subsequently two used engine oil samples from a same diesel engine vehicle were analyzed using fluorescence spectroscopic method. Ā Notable variation in fluorescence emission intensities was observed with oil aging. Intensity of the fluorescence emission signal decrease with oil degradation.Ā  Therefore fluorescence spectroscopic method can be used to predict the reusability of gear oils as well as to identify the oil degradation. This method can be further extended to develop a novel potential sensor to detect the quality of oil in various types of engines. KEYWORDS: Lubricant oil, Oil degradation, Fluorescence spectroscopy, Analytical methods

    ONC201 in combination with paxalisib for the treatment of H3K27-altered diffuse midline glioma

    Get PDF
    Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are the most lethal of childhood cancers. Palliative radiotherapy is the only established treatment, with median patient survival of 9-11 months. ONC201 is a DRD2 antagonist and ClpP agonist that has shown preclinical and emerging clinical efficacy in DMG. However, further work is needed to identify the mechanisms of response of DIPGs to ONC201 treatment and to determine whether recurring genomic features influence response. Using a systems-biological approach, we showed that ONC201 elicits potent agonism of the mitochondrial protease ClpP to drive proteolysis of electron transport chain and tricarboxylic acid cycle proteins. DIPGs harboring PIK3CA-mutations showed increased sensitivity to ONC201, while those harboring TP53-mutations were more resistant. Metabolic adaptation and reduced sensitivity to ONC201 was promoted by redox-activated PI3K/Akt signaling, which could be counteracted using the brain penetrant PI3K/Akt inhibitor, paxalisib. Together, these discoveries coupled with the powerful anti-DIPG/DMG pharmacokinetic and pharmacodynamic properties of ONC201 and paxalisib have provided the rationale for the ongoing DIPG/DMG phase II combination clinical trial NCT05009992

    Crop Updates 2006 - Weeds

    Get PDF
    This session covers thirty seven papers from different authors: 1. ACKNOWLEDGEMENTS, Alexandra Douglas, CONVENOR ā€“ WEEDS DEPARTMENT OF AGRICULTURE SPRAY TECHNOLOGY 2. Meeting the variable application goals with new application technology, Thomas M. Wolf, Agriculture and Agri-Food Canada, Saskatoon Research Centre 3. Spray nozzles for grass weed control, Harm van Rees, BCG (Birchip Cropping Group) 4. Boom sprayer setups ā€“ achieving coarse droplets with different operating parameters, Bill Gordon, Bill Gordon Consulting 5. Complying with product label requirements, Bill Gordon, Bill Gordon Consulting 6. IWM a proven performer over 5 years in 33 focus paddocks, Peter Newman and Glenn Adam, Department of Agriculture 7. Crop topping of wild radish in lupins and barley, how long is a piece of string? Peter Newman and Glenn Adam, Department of Agriculture 8. Determining the right timing to maximise seed set control of wild radish, Aik Cheam and Siew Lee, Department of Agriculture 9. Why weed wiping varies in success rates in broadacre crops? Aik Cheam1, Katherine Hollaway2, Siew Lee1, Brad Rayner1 and John Peirce1,1Department of Agriculture, 2Department of Primary Industries, Victoria 10. Are WA growers successfully managing herbicide resistant annual ryegrass? Rick Llewellynabc, Frank Dā€™Emdena, Mechelle Owenb and Stephen Powlesb aCRC Australian Weed Management, School of Agricultural and Resource Economics, University of Western Australia; bWA Herbicide Resistance Initiative, University of Western Australia. cCurrent address: CSIRO Sustainable Ecosystems 11. Do herbicide resistant wild radish populations look different? Michael Walsh, Western Australian Herbicide Resistance Initiative, University of Western Australia 12. Can glyphosate and paraquat annual ryegrass reduce crop topping efficacy? Emma Glasfurd, Michael Walsh and Kathryn Steadman, Western Australian Herbicide Resistance Initiative, University of Western Australia 13. Tetraploid ryegrass for WA. Productive pasture phase AND defeating herbicide resistant ryegrass, Stephen Powlesa, David Ferrisab and Bevan Addisonc, aWA Herbicide Resistance Initiative, University of Western Australia; bDepartment of Agriculture, and cElders Limited 14. Long-term management impact on seedbank of wild radish with multiple resistance to diflufenican and triazines, Aik Cheam, Siew Lee, Dave Nicholson and Ruben Vargas, Department of Agriculture 15. East-west crop row orientation improves wheat and barley yields, Dr Shahab Pathan, Dr Abul Hashem, Nerys Wilkins and Catherine Borger3, Department of Agriculture, 3WAHRI, The University ofWestern Australia 16. Competitiveness of different lupin cultivars with wild radish, Dr Shahab Pathan, Dr Bob French and Dr Abul Hashem, Department of Agriculture 17. Managing herbicide resistant weeds through farming systems, Kari-Lee Falconer, Martin Harries and Chris Matthews, Department of Agriculture 18. Lupins tolerate in-row herbicides well, Peter Newman and Martin Harries, Department of Agriculture 19. Summer weeds can reduce wheat grain yield and protein, Dr Abul Hashem1, Dr Shahab Pathan1 and Vikki Osten3, 1Department Agriculture, 3Senior Agronomist, CRC for Australian Weed Management, Queensland Department of Primary Industries and Fisheries 20. Diuron post-emergent in lupins, the full story, Peter Newman and Glenn Adam, Department of Agriculture 21. Double incorporation of trifluralin, Peter Newman and Glenn Adam, Department of Agriculture 22. Herbicide tolerance of narrow leafed and yellow lupins, Harmohinder Dhammu, David Nicholson, Department of Agriculture 23. MIG narrow leaf lupin herbicide tolerance trial, Richard Quinlan, Planfarm Pty Ltd, Trials Coordinator MIG; Debbie Allen, Research Agronomist ā€“ MIG 24. Herbicide tolerance of new albus lupins, Harmohinder Dhammu, David Nicholson, Department of Agriculture 25. Field pea x herbicide tolerance, Mark Seymour and Harmohinder Dhammu, Research Officers, and Pam Burgess, Department of Agriculture 26. Faba bean variety x herbicide tolerance, Mark Seymour and Harmohinder Dhammu, Research Officers, and Pam Burgess, Department of Agriculture 27. Herbicide tolerance of new Kabili chickpeas, Harmohinder Dhammu, Owen Coppen and Chris Roberts, Department of Agriculture 28. Timing of phenoxys application in EAG Eagle Rock, Harmohinder Dhammu, David Nicholson, Department of Agriculture 29. Herbicide tolerance of new wheat varieties, Harmohinder Dhammu, David Nicholson, Department of Agriculture 30. Lathyrus sativus x herbicide tolerance, Mark Seymour, Department of Agriculture 31. Tolerance of annual pasture species to herbicides and mixtures containing diuron, Christiaan Valentine and David Ferris, Department of Agriculture 32. The impact of herbicides on pasture legume species ā€“ a summary of scientific trial results across 8 years, Christiaan Valentine and David Ferris, Department of Agriculture 33. The impact of spraytopping on pasture legume seed set, Christiaan Valentine and David Ferris, Department of Agriculture 34. Ascochyta interaction with Broadstrike in chickpeas, H.S. Dhammu1, A.K. Basandrai2,3, W.J. MacLeod1, 3 and C. Roberts1, 1Department of Agriculture, 2CSKHPAU, Dhaulakuan, Sirmour (HP), India and 3CLIMA 35. Best management practices for atrazine in broadacre crops, John Moore, Department of Agriculture, Neil Rothnie, Chemistry Centre of WA, Russell Speed, Department of Agriculture, John Simons, Department of Agriculture, and Ted Spadek, Chemistry Centre of WA 36. Biology and management of red dodder (Cuscuta planiflolia) ā€“ a new threat to the grains industry, Abul Hashem, Daya Patabendige and Chris Roberts, Department Agriculture 37. Help the wizard stop the green invaders! Michael Renton, Sally Peltzer and Art Diggle, Department of Agricultur

    Crop Updates 2002 - Farming Systems

    Get PDF
    This session covers forty one papers from different authors: INTRODUCTION 1. Future Farming Systems session for Crop Updates 2002 Peter Metcalf, FARMING SYSTEMS SUBPROGRAM MANAGER GRAINS PROGRAM Department of Agriculture 2. Perennial pastures in annual cropping systems: Lucerne and beyond, the ā€˜Big Pictureā€™, Mike Ewing, Deputy CEO CRC for Plant-based Management of Dryland Salinity, Department of Agriculture 3. Perennial pastures in annual cropping systems: lucerne and beyond, Roy Latta and Keith Devenish, Department of Agriculture 4. Establishing Lucerne with a cover crop, Diana Fedorenko1, Clayton Butterly1, Chantelle Butterly1, Kim and Neil Diamond2, Stuart McAlpine2, Bill Bowden1, Jessica Johns3, 1Centre for Cropping Systems, Northam, 2Farmer, Buntine, 3Department of Agriculture 5. Overcropping: Chemical suppression of Lucerne, Terry Piper1, Diana Fedorenko1, Clayton Butterly1, Chantelle Butterly1, Stuart McAlpine2, Jessica Johns3, 1Centre for Cropping Systems, Northam, 2Farmer, Buntine, 3Department of Agriculture 6. Overcropping: Effect of Lucerne density on crop yield, Diana Fedorenko1, Bill Bowden1, Clayton Butterly1, Chantelle Butterly1, Stuart McAlpine2, Terry Piper1,1Centre for Cropping Systems, Department of Agriculture, Northam, 2Farmer, Buntine 7. Residual effect of weed management in the third year of Lucerne on the following wheat crop, Diana Fedorenko1, Clayton Butterly1, Chantelle Butterly1, Stuart McAlpine2,Terry Piper1, David Bowran1, Jessica Johns3,1Centre for Cropping Systems, Northam, 2Farmer, Buntine, 3Department of Agriculture 8. Production of Lucerne and serradella in four soil types, Diana Fedorenko1 Clayton Butterly1, Chantelle Butterly1, Robert Beard2 1Centre for Cropping Systems, Department of Agriculture, 2Farmer, Cunderdin 9. The effect of spray topping on newly established Lucerne, Keith Devenish, Agriculture Western Australia 10. Leakage from phase rotations involving Lucerne, Phil Ward, CSIRO Plant Industry 11. Fungal diseases present in Western Australian Lucerne crops, Dominie Wright and Nichole Burges, Department of Agriculture 12. Survey of Western Australian Lucerne stands reveals widespread virus infection, Roger Jones and Danae Harman, Crop Improvement Institute, Department of Agriculture, and Centre for Legumes in Mediterranean Agriculture, University of WA ANNUAL PASTURE SYSTEMS 13. The use of Twist Fungus as a biosecurity measure against Annual Ryegrass Toxicity (ARGT), Greg Shea, GrainGuard Coordinator and George Yan, Biological and Resource Technology 14.Limitations and opportunities for increasing water use by annual crops and pastures, David Tennant1, Phil Ward2and David Hall1 1Department of Agriculture, 2CSIRO, Plant Industries, Floreat Park 15. Developing pasture species mixtures for more productive and sustainable cropping systems ā€“ 2001 crop performance, Anyou Liu, Clinton Revell and Candy Hudson, Centre for Cropping Systems, Department of Agriculture 16. Developing pasture species mixtures for more productive and sustainable cropping systems ā€“ weed management in regenerating mixtures, Anyou Liu and Clinton Revell, Centre for Cropping Systems, Department of Agriculture 17. Aphid tolerance of annual pasture legumes, Andrew Blake, Natalie Lauritsen, Department of Agriculture 18. Selecting the right variety for phase pasture systems, Keith Devenish, Department of Agriculture 19. Responses of alternative annual pasture and forage legumes to challenge with infectious subterranean clover mottle virus, John Fosu-Nyarko, Roger Jones, Lisa Smith, Mike Jones and Geoff Dwyer, State Agricultural Biotechnology Centre and Centre for Bioinformatics and Biological Computing, Murdoch University, Department of Agriculture, and Centre for Legumes in Mediterranean Agriculture SOIL AND LAND MANAGEMENT 20. Nutrition in 2002: Decisions to be made as a result of last season, Bill Bowden,Western Australia Department of Agriculture 21. Profitability of deep banding lime, Michael O\u27Connell, Chris Gazey and David Gartner, Department of Agriculture 22. Lime efficiency percentageā€¦the new measure of lime effectiveness for Western Australia, Amanda Miller, Department of Agriculture 23. Boron ā€“ should we be worried about it, Richard W. BellA, K. FrostA, Mike WongBand Ross BrennanC ASchool of Environmental Science, Murdoch University, BCSIRO Land and Water, CDepartment of Agriculture 24. Impact of claying and other amelioration on paddock profit, N.J. Blake1, G. McConnell2, D. Patabendige1and N. Venn11Department of Agriculture, 2PlanFarm P/L 25. Raised bed farming in the 2001 growing season, Derk Bakker, Greg Hamilton, Dave Houlbrooke and Cliff Spann, Department of Agriculture 26. Economics of tramline farming systems, Paul Blackwell and Bindi Webb, Department of Agriculture, Stuart McAlpine, Liebe Group. 27. Relay planting from Tramlines to increase water use and productivity os summer crops, Dr Paul Blackwell, Department of Agriculture, Neil and Kim Diamond, Buntine. Liebe Group 28.Evidence-based zone management of paddock variability to improve profits and environmental outcomes, M.T.F. WongA, D. PatabendigeB, G. LyleA and K. WittwerA ACSIRO Land and Water, BDepartment of Agriculture 29. How much soil water is lost over summer in sandy soils? Perry Dolling1, Senthold Asseng2, Ian Fillery2, Phil Ward2and Michael Robertson3 1University of Western Australia/Department of Agriculture Western Australia/CSIRO, 2CSIRO Plant Industry 3CSIRO Sustainable Ecosystems, Indooroopilly, Queensland FARMER DECISION SUPPORT AND ADOPTION 30. Economic comparisons of farming systems for the medium rainfall northern sandplain, No 1, Caroline Peek and David Rogers, Department of Agriculture 31. Sensitivity analysis of farming systems for the medium rainfall northern sandplain No 2, Caroline Peek and David Rogers, Department of Agriculture 32. Transition analysis of farming systems in the medium rainfall northern sandplain. No 3, Caroline Peek and David Rogers, Department of Agriculture 33. Implementing on-farm quality assurance, Peter Portmann, Manager Research and Development, The Grain Pool of Western Australia 34. On-farm research ā€“ principles of the ā€˜Test As You Growā€™ kit, Jeff Russell, Department of Agriculture 35. Broadscale wheat variety comparisons featuring Wyalkatchem, Jeff Russell, Department of Agriculture 36. GrainGuardƔ - A biosecurity plan for the Canola Industry,Greg Shea Department of Agriculture 37. Are Western Australian broadacre farms efficient? Ben Henderson, University of Western Australia, Ross Kingwell, Department of Agriculture and University of Western Australia DISEASE MODELLING WORKSHOP 38. WORKSHOP: Pest and disease forecasts for you! An interactive forum, Tresslyn Walmsley, Jean Galloway, Debbie Thackray, Moin Salam and Art Diggle, Centre for Legumes in Mediterranean Agriculture and Department of Agriculture 39. Blackspot spread: Disease models are based in reality (Workshop paper 1), JeanGalloway,Department of Agriculture 40. Blackspot spread: Scaling-up field data to simulate ā€˜Bakerā€™s farmā€™ (Workshop paper 2), Moin U. Salam, Jean Galloway, Art J. Diggle and William J. MacLeod, Department of Agriculture, Western Australia 41. A decision support system for control of aphids and CMV in lupin crops (Workshop paper 3), Debbie Thackray, Jenny Hawkes and Roger Jones, Centre for Legumes in Mediterranean Agriculture and Department of Agricultur

    A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases and cytotoxicity testing

    Get PDF
    Blood brain barrier (BBB) cells play key roles in the physiology and pathology of the central nervous system (CNS). BBB dysfunction is implicated in many neurodegenerative diseases, including Alzheimerā€™s disease (AD). The BBB consists of capillary endothelial cells, pericytes encircling the endothelium and surrounding astrocytes extending their processes towards it. Although there have been many attempts to develop in vitro BBB models, the complex interaction between these celltypes makes it extremely difficult to determine their individual contribution to neurotoxicity in vivo. Thus, we developed and optimised an in vitro multicellular co-culture model within the Kirkstall Quasi Vivo System. The main aim was to determine the optimal environment to culture human brain primary endothelial cells, pericytes and astrocytes whilst maintaining cellular communication without formation of a barrier in order to assess the contribution of each cell type to the overall response. As a proof of concept for the present system, the effects of amyloid-beta 25-35 peptide (AĪ²25-35), a hall mark of AD, were explored. This multicellular system will be a valuable tool for future studies on the specific roles of individual BBB cell type (while making connection with each other through medium) in CNS disorders as well as in cytotoxicity tests

    Bloodā€“brain barrier disruption in dementia: Nanoā€solutions as new treatment options:Nano-solutions as new treatment options

    No full text
    Candidate drugs targeting the central nervous system (CNS) demonstrate extremely low clinical success rates, with more than 98% of potential treatments being discontinued due to poor blood-brain barrier (BBB) permeability. Neurological conditions were shown to be the second leading cause of death globally in 2016, with the number of people currently affected by neurological disorders increasing rapidly. This increasing trend, along with an inability to develop BBB permeating drugs, is presenting a major hurdle in the treatment of CNS-related disorders, like dementia. To overcome this, it is necessary to understand the structure and function of the BBB, including the transport of molecules across its interface in both healthy and pathological conditions. The use of CNS drug carriers is rapidly gaining popularity in CNS research due to their ability to target BBB transport systems. Further research and development of drug delivery vehicles could provide essential information that can be used to develop novel treatments for neurological conditions. This review discusses the BBB and its transport systems and evaluates the potential of using nanoparticle-based delivery systems as drug carriers for CNS disease with a focus on dementia.</p
    corecore