14 research outputs found
Recommended from our members
Surface Wave Simulation and Processing with MatSeis
In order to exploit the information on surface wave propagation that is stored in large seismic event datasets, Sandia and Lawrence Livermore National Laboratories have developed a MatSeis interface for performing phase-matched filtering of Rayleigh arrivals. MatSeis is a Matlab-based seismic processing toolkit which provides graphical tools for analyzing seismic data from a network of stations. Tools are available for spectral and polarization measurements, as well as beam forming and f-k analysis with array data, to name just a few. Additionally, one has full access to the Matlab environment and any functions available there. Previously the authors reported the development of new MatSeis tools for calculating regional discrimination measurements. The first of these performs Lg coda analysis as developed by Mayeda and coworkers at Lawrence Livermore National Laboratory. A second tool measures regional phase amplitude ratios for an event and compares the results to ratios from known earthquakes and explosions. Release 1.5 of MatSeis includes the new interface for the analysis of surface wave arrivals. This effort involves the use of regionalized dispersion models from a repository of surface wave data and the construction of phase-matched filters to improve surface wave identification, detection, and magnitude calculation. The tool works as follows. First, a ray is traced from source to receiver through a user-defined grid containing different group velocity versus period values to determine the composite group velocity curve for the path. This curve is shown along with the upper and lower group velocity bounds for reference. Next, the curve is used to create a phase-matched filter, apply the filter, and show the resultant waveform. The application of the filter allows obscured Rayleigh arrivals to be more easily identified. Finally, after screening information outside the range of the phase-matched filter, an inverse version of the filter is applied to obtain a cleaned raw waveform which can be used for amplitude measurements. Because all the MatSeis tools have been written as Matlab functions, they can be easily modified to experiment with different processing details. The performance of the propagation models can be evaluated using any event available in the repository of surface wave events
A variable resolution surface wave dispersion study of Eurasia, North Africa, and surrounding regions
This paper presents the results of a large-scale study of surface wave dispersion performed across Eurasia and North Africa. Improvements were made to previous surface wave work by enlarging the study region, increasing path density, improving spatial resolution, and expanding the period range. This study expands the coverage area northwards and eastwards relative to a previous dispersion analysis, which covered only North Africa and the Middle East. We have significantly increased the number of seismograms examined and group velocity measurements made. We have now made good quality dispersion measurements for about 30,000 Rayleigh wave and 20,000 Love wave paths, and have incorporated measurements from several other researchers into the study. A conjugate gradient method was employed for the group velocity tomography, which improved the inversion from the previous study by adopting a variable smoothness. This technique allows us to go to higher resolution where the data allow without producing artifacts. The current results include both Love and Rayleigh wave inversions across the region for periods from 7 to 100 seconds at 1{sup o} resolution. Short period group velocities are sensitive to slow velocities associated with large sedimentary features such as the Caspian Sea, West Siberian Platform, Mediterranean Sea, Bay of Bengal, Tarim Basin, and Persian Gulf. Intermediate periods are sensitive to differences in crustal thickness, such as those between oceanic and continental crust or along orogenic zones and continental plateaus. At longer periods, fast velocities are consistently found beneath cratons while slow upper mantle velocities occur along rift systems, subduction zones, and collision zones such as the Tethys Belt. We have compared the group velocities at various periods with features such as sediment thickness, topographic height, crustal thickness, proximity to plate boundaries, lithospheric age and lithospheric thickness, and find significant correlations. We don't find any similar correlation between the longest period surface waves and hot spots
Seismic structure of Kuwait
We have used data from the Kuwait National Seismic Network (KNSN) to estimate the seismic structure of Kuwait using a limited amount of seismic data. First, we made surface wave dispersion measurements and calculated receiver functions from the relatively small amount of data available from the broad-band station, KBD. Models were derived from the joint inversion of teleseismic receiver functions and Rayleigh and Love fundamental mode surface wave group velocity dispersion. While both surface waves and receiver functions by themselves can be used to estimate lithospheric structure, we have successfully combined the two to reduce non-uniqueness in estimates based on the individual data sets. The resulting KUW1 model features a thick (8 km) sedimentary cover and crustal thickness of 45 km. Crustal velocities below the sedimentary cover are consistent with global averages for stable platforms. We infer upper-mantle velocities (7.84 km s-1 P-wave velocity; 4.40 km s-1 S-wave velocity) that are slightly lower than expected for a stable platform. In comparison with other crustal structure estimates for the Arabian platform to the west, the crust is thicker and the mantle is slower in Kuwait. This is consistent with the overall tectonic trends of the region that find increasing crustal thickness between the divergent plate boundary at the Red Sea and the convergent plate boundary at the Zagros Mts, as well as slow mantle velocities beneath this nearby orogenic zone. The resulting model fits the traveltimes of regional phases (Pn, Pg, Sn and Lg). Independent inversion of local earthquake traveltimes recorded by KNSN (allowing for event hypocentre relocation) results in a remarkably similar velocity structure, providing confidence that the joint inversion of receiver functions and surface wave group velocities can impose accurate constraints on crustal structure for local event location and network operations. Relocation of events in Kuwait improves the clustering of events and results in shallower hypocentres
A multistep approach for joint modeling of surface wave dispersion and teleseismic receiver functions: Implications for lithospheric structure of the Arabian Peninsula
We present a multiple step procedure for joint modeling of surface wave group velocity dispersion curves and teleseismic receiver functions for lithospheric velocity structure. The method relies on an initial grid search for a simple crustal structure, followed by a formal iterative inversion, an additional grid search for shear wave velocity in the mantle, and finally, forward modeling of transverse isotropy to resolve Love-Rayleigh surface wave dispersion discrepancy. It considers longer-period surface wave group velocity (SWGV) dispersion, allowing for the resolution of deeper structure compared to previous joint inversions. The grid search for simple crustal structure is facilitated using a library of precomputed receiver functions and SWGV dispersion curves. The iterative inversion improves fit to the data by increasing the number of layers in the crust when necessary. In order to fit the SWGV for periods greater than about 50 s, we perform a grid search over mantle velocities including the mantle lid and low-velocity zone, keeping the crustal structure fixed to the values from the previous step. In some cases a clear Love-Rayleigh discrepancy prevents a simultaneous fit of the group velocities with an isotropic model. The Love-Rayleigh discrepancy can be resolved by allowing shear wave transverse isotropy with a vertical symmetry axis (VSH - VSV differences) in the uppermost mantle. The method is applied to 10 stations in the Arabian Peninsula sampling various tectonic environments including active continental rifting and stable regions. The resulting shear velocity models confirm rapid crustal thinning of the Arabian Shield toward the Red Sea; however, we do not find strong evidence for crustal thickening toward the Arabian Platform. Our results suggest that the mantle lithosphere thickness varies regionally but that the mantle shear velocities beneath the Arabian Shield and Red Sea coast are generally anomalously low. Furthermore, our results indicate the presence of strong polarization anisotropy (up to about 10%) in the lithospheric upper mantle, in the vicinity of, as well as farther away from, the Red Sea. Our modeling yields VSV > VSH in the southwestern part of the Arabian Peninsula, consistent with vertical flow, and VSH > VSV in the northwestern part of the Arabian Peninsula and the continental interior, consistent with horizontal flow, indicating that the mantle flow pattern is not uniform along the axis of the Red Sea
Attenuation Tomography of the Yellow Sea/Korean Peninsula from Coda-source normalized and direct Lg Amplitudes
We invert for regional attenuation of the crustal phase Lg in the Yellow Sea/Korean Peninsula (YSKP) using three different amplitude attenuation tomography methods. The first method solves for source, site, and path attenuation. The second method uses a scaling relationship to set the initial source amplitude and interpret the source term after inversion. The third method implements a coda-derived source spectral correction. By comparing methods with slightly different assumptions we are able to make a more realistic assessment of the uncertainties in the resulting attenuation maps than is obtainable through formal error analysis alone. We compare the site, source and path-terms produced by each method and comment on attenuation, which correlates well with tectonic and topographic features in the region. Source terms correlate well with each other and with magnitude. Site terms are similar except for two stations that are located in a region that has the greatest difference in path term, which demonstrates the site/path trade-off. Another region of path term difference has the fewest crossing paths, where the tomography method employing the coda-derived spectral correction may perform more accurately since it is not as susceptible to the source/path trade-off. The Bohai Bay basin, an area of extension, is a region of high attenuation, and regions of low attenuation occur along topographic highs located in the Da-xin-an-ling and Changbai Mountains and Mount Taishan