188 research outputs found

    Some cases of deep-seated gravitational deformations in the area of Cortina d'Ampezzo (Dolomites). Implications in environmental risk assessment

    Get PDF
    The Authors, after having analyzed the main geomorphological and structural fractures characterizing dee-seated gravitational deformations and presented some terminological problems, describe four cases of deep-seated gravitational deformations in the area of Cortina d'Ampezzo (Dolomites). Moreover the relationships between these phenomena, which often deem to favour the development of "collateral" slope movements and landscape aspects, like Cortina d'Ampezzo, are examined

    Validation of landslide hazard assessment by means of GPS monitoring technique ? a case study in the Dolomites (Eastern Alps, Italy)

    Get PDF
    International audienceIn the last years a research project aimed at the assessment of the landslide hazard and susceptibility in the high Cordevole river basin (Eastern Dolomites, Italy) have been carried out. The hazard map was made adopting the Swiss Confederation semi-deterministic approach that takes into account parameters such as velocity, geometry and frequency of landslides. Usually these parameters are collected by means of geological and morphological surveys, historical archive researches, aerophotogrammetric analysis etc. In this framework however the dynamics of an instable slope can be difficult to determine. This work aims at illustrating some progress in landslide hazard assessment using a modified version of the Swiss Confederation semi-deterministic approach in which the values of some parameters have been refined in order to accomplish more reliable results in hazard assessment. A validation of the accuracy of these new values, using GPS and inclinometric measurements, has been carried out on a test site located inside the high Cordevole river basin

    Fiber opticsensors for precursory acoustic signals detection in rockfall events

    Get PDF
    Two fiber optic sensors (FOSs) for detection of precursory acoustic emissions in rockfall events are addressed and experimentally characterized. Both sensors are based on interferometric schemes, with the first one consisting of a fiber coil used as sensing element and the second one exploiting a micro-machined cantilever carved on the top of a ferrule. Preliminary comparisons with standard piezo-electric transducers shows the viability of such FOSs for acoustic emission monitoring in rock masses

    Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): an example from the northwestern coast of Malta

    Get PDF
    Persistent Scatterers Interferometry (PSI) techniques are widely employed in geosciences to detect and monitor landslides with high accuracy over large areas, but they also suffer from physical and technological constraints that restrict their field of application. These limitations prevent us from collecting information from several critical areas within the investigated region. In this paper, we present a novel approach that exploits the results of PSI analysis for the implementation of a statistical model for landslide susceptibility. The attempt is to identify active mass movements by means of PSI and to avoid, as input data, time-/cost-consuming and seldom updated landslide inventories. The study has been performed along the northwestern coast of Malta (central Mediterranean Sea), where the peculiar geological and geomorphological settings favor the occurrence of a series of extensive slow-moving landslides. Most of these consist in rock spreads, evolving into block slides, with large limestone blocks characterized by scarce vegetation and proper inclination, which represent suitable natural radar reflectors for applying PSI. Based on geomorphometric analyses and geomorphological investigations, a series of landslide predisposing factors were selected and a susceptibility map created. The result was validated by means of cross-validation technique, field surveys and global navigation satellite system in situ monitoring activities. The final outcome shows a good reliability and could represent an adequate response to the increasing demand for effective and lowcost tools for landslide susceptibility assessment

    Landslide hazard evaluation by means of several monitoring techniques, including an acoustic emission sensor

    Get PDF
    At Passo della Morte in the Italian Eastern Alps a geomorphological survey has identified potential instability of the valley side slope that could result in a debris/rock avalanche, which would threaten the Tagliamento River. A nationally important road passes through a tunnel 130 m long behind the potentially unstable slope. The stratum comprises a sequence of Limestone layers, dipping in the slope direction towards the river. Although currently there is no clear evidence of movement, the geological setting indicates a predisposition to instability that could involve a large landslide and extremely fast deformations can be foreseen. To appraise the physical characteristics of the rock mass and to provide an early warning of instability, monitoring instrumentation has been installed and monitored since late 2010. Extensometers, MEMS, TDR cables, a ver-tical inclinometer, a seismic station to monitor Limestone rock mass deformation generated micro-tremors and an acoustic emission (AE) monitoring system have been installed. The instruments are connected to real-time recording and transmitting units. The paper describes the geological setting and associated potential modes of instability. It details the design of the instrument installations and presents results obtained to date. In particular, the novel acoustic emission monitoring approach is described including sensor design, method of operation and comparison of the measured AE response with the deformation measurements and detected micro-tremor trends. Initial results indicate a strong response of the acoustic sensors to rainfall events. No sig-nificant rock mass deformations have been detected at depth within the slope to date, although a surface ex-tensometer has shown widening of a bedding tension crack. Upgrading of the instrumentation system is ongo-ing and it is planned to continue monitoring for the foreseeable future

    Site investigation and modelling at "La Maina" landslide (Carnian Alps, Italy)

    Get PDF
    International audienceThe Sauris reservoir is a hydroelectric basin closed downstream by a 136 m high, double arc concrete dam. The dam is firmly anchored to a consistent rock (Dolomia dello Schlern), but the Lower Triassic clayey formations, cropping out especially in the lower part of the slopes, have made the whole catchment basin increasingly prone to landslides. In recent years, the "La Maina landslide" has opened up several joints over a surface of about 100 000 m2, displacing about 1 500 000 m3 of material. Particular attention is now being given to the evolution of the instability area, as the reservoir is located at the foot of the landslide. Under the commission of the Regional Authority for Civil Protection a numerical modelling simulation in a pseudo-time condition of the slope was developed, in order to understand the risk for transport infrastructures, for some houses and for the reservoir and to take urgent mesaures to stabilize the slope. A monitoring system consisting of four inclinometers, three wire extensometers and ten GPS bench-mark pillars was immediately set up to check on surface and deep displacements. The data collected and the geological and geomorphological evidences was used to carry out a numerical simulation. The reliability of the results was checked by comparing the model with the morphological evidence of the movement. The mitigation measures were designed and realised following the indications provided by the model

    Evaluation of seismic effects on the landslide deposits of Monte Salta (Eastern Italian Alps) using distinct element method

    No full text
    International audienceThe aim of the paper is to present the modelling of the ground effects of seismic waves on a large debris deposit lying on a steep mountain slope, with particular attention paid to the potential triggering of slope movements. The study site is a mass of 2.5 million m3 rock fall deposit, named "Monte Salta Landslide", located on the northern slope of the Vajont valley, at the border between Veneto and Friuli Venezia Giulia regions in north-eastern Italy. Several historical landslide events were reported in the area in the past, first one dating back to the 17th century. The landslide deposit completely mantles the slope with a thick cover of rock blocks. The Mt. Salta landslide is conditioned by the presence of Mt. Borgà regional thrust, which uplifts Jurassic limestone on the top of Cretaceous rock units. Above the thrust zone, folded and highly fractured rock mass dips steeply towards the slope free face, producing highly unstable setting. The study area has been classified as high seismic hazard and different vulnerable elements can be affected by the remobilisation of debris, among which a village, a national road and a big quarry that was opened, with the intent to exploit the part of the landslide deposit for construction purposes. In this study, numerical analysis was performed, to simulate the slope behaviour using distinct element method and applying UDEC code. The 2-D models were built on three cross-sections and elasto-plastic behaviour was assumed, both for rock matrix and discontinuities. The earthquake effect was modelled in pseudo-dynamic way, i.e. by magnifying the acceleration and applying also its horizontal component. The expected seismic acceleration in the study area was calculated on the basis of previous studies as equal to 0.28 g. The results proved that the increase of the vertical component alone has a small influence on the deformational behaviour of the system. Hence, the acceleration vector was deviated at 5° and then at 10° from the vertical. A small increment of the displacement was observed in the first case, whereas very large movements occurred in the second. Therefore, it can be concluded that, besides the magnitude of the earthquake, even small seismic waves in horizontal direction could trigger significant movements and therefore hazardous conditions. The modelled scenario should be helpful for planning of the functional countermeasure works and civil defence evacuation plan

    Geomorphological map of the NW Coast of the Island of Malta (Mediterranean Sea)

    Get PDF
    This paper presents the results of geomorphological investigations carried along the north-western coast of the Island of Malta. Field surveys, accompanied by aerial photo-intepretation, have led to the production of a geomorphological map at 1:7500 scale which outlines the main processes and related landforms. The latter are the result of the complex interplay of structural, gravitational, coastal and karst processes. Particular attention was devoted to the recognition, identification and mapping of landslides which affect large coastal sectors of the study area, locally giving rise to hazard conditions
    • …
    corecore