30 research outputs found

    Double-Exchange Ferromagnetism and Orbital-Fluctuation-Induced Superconductivity in Cubic Uranium Compounds

    Full text link
    A double-exchange mechanism for the emergence of ferromagnetism in cubic uranium compounds is proposed on the basis of a jj-jj coupling scheme. The idea is {\it orbital-dependent duality} of 5f5f electrons concerning itinerant Γ8−\Gamma_8^- and localized Γ7−\Gamma_7^- states in the cubic structure. Since orbital degree of freedom is still active in the ferromagnetic phase, orbital-related quantum critical phenomenon is expected to appear. In fact, odd-parity p-wave pairing compatible with ferromagnetism is found in the vicinity of an orbital ordered phase. Furthermore, even-parity d-wave pairing with significant odd-frequency components is obtained. A possibility to observe such exotic superconductivity in manganites is also discussed briefly.Comment: 4 pages, 4 figures. To appear in J. Phys. Soc. Jp

    Construction of microscopic model for f-electron systems on the basis of j-j coupling scheme

    Full text link
    We construct a microscopic model for f-electron systems, composed of f-electron hopping, Coulomb interaction, and crystalline electric field (CEF) terms. In order to clarify the meaning of one f-electron state, here the j-j coupling scheme is considered, since the spin-orbit interaction is generally large in f-electron systems. Thus, the f-electron state at each site is labelled by μ\mu, namely, the z-component of total angular momentum j. By paying due attention to f-orbital symmetry, the hopping amplitudes between f-electron states are expressed using Slater's integrals. The Coulomb interaction terms among the μ\mu-states are written by Slater-Condon or Racah parameters. Finally, the CEF terms are obtained from the table of Hutchings. The constructed Hamiltonian is regarded as an orbital degenerate Hubbard model, since it includes two pseudo-spin and three pseudo-orbital degrees of freedom. For practical purposes, it is further simplified into a couple of two-orbital models by discarding one of the three orbitals. One of those simplified models is here analyzed using the exact diagonalization method to clarify ground-state properties by evaluating several kinds of correlation functions. Especially, the superconducting pair correlation function in orbital degenerate systems is carefully calculated based on the concept of off-diagonal long-range order. We attempt to discuss a possible relation of the present results with experimental observations for recently discovered heavy fermion superconductors CeMIn5_5 (M=Ir, Co, and Rh), and a comprehensive scenario to understand superconducting and antiferromagnetic tendencies in the so-called ``115'' materials such as CeMIn5_5, UMGa5_5, and PuCoGa5_5 from the microscopic viewpoint.Comment: 16 pages, Revtex, with 6 figures embedded in the text. Submitted to Phys. Rev.

    Evidence for sparse synergies in grasping actions

    Get PDF
    Converging evidence shows that hand-actions are controlled at the level of synergies and not single muscles. One intriguing aspect of synergy-based action-representation is that it may be intrinsically sparse and the same synergies can be shared across several distinct types of hand-actions. Here, adopting a normative angle, we consider three hypotheses for hand-action optimal-control: sparse-combination hypothesis (SC) – sparsity in the mapping between synergies and actions - i.e., actions implemented using a sparse combination of synergies; sparse-elements hypothesis (SE) – sparsity in synergy representation – i.e., the mapping between degrees-of-freedom (DoF) and synergies is sparse; double-sparsity hypothesis (DS) – a novel view combining both SC and SE – i.e., both the mapping between DoF and synergies and between synergies and actions are sparse, each action implementing a sparse combination of synergies (as in SC), each using a limited set of DoFs (as in SE). We evaluate these hypotheses using hand kinematic data from six human subjects performing nine different types of reach-to-grasp actions. Our results support DS, suggesting that the best action representation is based on a relatively large set of synergies, each involving a reduced number of degrees-of-freedom, and that distinct sets of synergies may be involved in distinct tasks

    Brain ApoA-I, ApoJ and ApoE immunodetection in cerebral amyloid angiopathy

    No full text
    Càrrega feta de Scopus d'articles UAB 2019 (Gold, hybrid o Bronze) procedents de l'Observatori d'Accés Obert (càrrega maig 2020). Compte! Cal comprovar la versió permesa per l'editor en els bronze.Cerebral amyloid angiopathy (CAA) is a common cause of lobar intracerebral hemorrhage (ICH) in elderly individuals and it is the result of the cerebrovascular deposition of beta-amyloid (Ab) protein. CAA is frequently found in patients with Alzheimer's disease (AD), although it has an independent contribution to the cognitive deterioration associated with age. Specific apolipoproteins (Apo) have been associated with Ab fibrillization and clearance from the brain. In this regard, in the present study, we analyzed the brain levels of ApoE, ApoA-I, and ApoJ/clusterin in autopsy brains from 20 post-mortem cases with CAA type I, CAA type II, with parenchymal Ab deposits or without Aβ deposits. Our objective was to find a possible differential pattern of apolipoproteins distribution in the brain depending on the CAA pathological presentation. The protein expression levels were adjusted by the APOE genotype of the patients included in the study. We found that ApoE and ApoJ were abundantly present in meningeal, cortical, and capillary vessels of the brains with vascular Aβ accumulation. ApoE and ApoJ also deposited extracellularly in the parenchyma, especially in cases presenting Aβ diffuse and neuritic parenchymal deposits. In contrast, ApoA-I staining was only relevant in capillary walls in CAA type I cases. On the other hand, ICH was the principal cause of death among CAA patients in our cohort. We found that CAA patients with ICH more commonly had APOE+2 compared with CAA patients without ICH. In addition, patients who suffered an ICH presented higher vascular ApoE levels in brain. However, higher ApoE presence in cortical arteries was the only independent predictor of suffering an ICH in our cohort after adjusting by age and APOE genotype. In conclusion, while ApoE and ApoJ appear to be involved in both vascular and parenchymal Ab pathology, ApoA-I seems to be mainly associated with CAA, especially in CAA type I pathology. We consider that our study helps to molecularly characterize the distribution subtypes of Aβ deposition within the brai

    Regulation of Fission Yeast Myosin-II Function and Contractile Ring Dynamics by Regulatory Light-Chain and Heavy-Chain Phosphorylation

    No full text
    We investigated the role of regulatory light-chain (Rlc1p) and heavy-chain phosphorylation in controlling fission yeast myosin-II (Myo2p) motor activity and function during cytokinesis. Phosphorylation of Rlc1p leads to a fourfold increase in Myo2p's in vitro motility rate, which ensures effective contractile ring constriction and function. Surprisingly, unlike with smooth muscle and nonmuscle myosin-II, RLC phosphorylation does not influence the actin-activated ATPase activity of Myo2p. A truncated form of Rlc1p lacking its extended N-terminal regulatory region (including phosphorylation sites) supported maximal Myo2p in vitro motility rates and normal contractile ring function. Thus, the unphosphorylated N-terminal extension of Rlc1p can uncouple the ATPase and motility activities of Myo2p. We confirmed the identity of one out of two putative heavy-chain phosphorylation sites previously reported to control Myo2p function and cytokinesis. Although in vitro studies indicated that phosphorylation at Ser-1444 is not needed for Myo2p motor activity, phosphorylation at this site promotes the initiation of contractile ring constriction

    COGNIMUSE: a multimodal video database annotated with saliency, events, semantics and emotion with application to summarization

    No full text
    Abstract: Research related to computational modeling for machine-based understanding requires ground truth data for training, content analysis, and evaluation. In this paper, we present a multimodal video database, namely COGNIMUSE, annotated with sensory and semantic saliency, events, cross-media semantics, and emotion. The purpose of this database is manifold; it can be used for training and evaluation of event detection and summarization algorithms, for classification and recognition of audio-visual and cross-media events, as well as for emotion tracking. In order to enable comparisons with other computational models, we propose state-of-the-art algorithms, specifically a unified energy-based audio-visual framework and a method for text saliency computation, for the detection of perceptually salient events from videos. Additionally, a movie summarization system for the automatic production of summaries is presented. Two kinds of evaluation were performed, an objective based on the saliency annotation of the database and an extensive qualitative human evaluation of the automatically produced summaries, where we investigated what composes high-quality movie summaries, where both methods verified the appropriateness of the proposed methods. The annotation of the database and the code for the summarization system can be found at http://cognimuse.cs.ntua.gr/database Keywords: Video database, SaliencyCross-media relations, Emotion annotation, Audio-visual events, Video summarization

    Reports of the AAAI 2011 conference workshops

    No full text
    The AAAI-11 workshop program was held Sunday and Monday, August 7-18, 2011, at the Hyatt Regency San Francisco in San Francisco, California USA. The AAAI-11 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were Activity Context Representation: Techniques and Languages; Analyzing Microtext; Applied Adversarial Reasoning and Risk Modeling; Artificial Intelligence and Smarter Living: The Conquest of Complexity; Artifiicial Intelligence for Data Center Management and Cloud Computing; Automated Action Planning for Autonomous Mobile Robots; Computational Models of Natural Argument; Generalized Planning; Human Computation; Human-Robot Interaction in Elder Care; Interactive Decision Theory and Game Theory, 2010; Language-Action Tools for Cognitive Artificial Agents: Integrating Vision, Action, and Language; Lifelong Learning from Sensorimotor Experience; Plan, Activity, and Intent Recognition; and Scalable Integration of Analytics and Visualization. This article presents short summaries of those events
    corecore