1,330 research outputs found

    Mechanical performance of auxetic polyurethane foam for antivibration glove applications

    Get PDF
    In this study the static and dynamic characteristics of conventional open cell polyurethane (PU), of auxetic (negative Poisson’s ratio) and of iso-density foams were analysed. The specimens were produced from conventional gray open-cells polyurethane foam with 30-35 pores/inch and 0.0027 g/cm3 density, by means of process which has been previously defined by the authors. Poisson’s ratio measurements were performed under quasi-static conditions using an MTS 858 servohydraulic test machine and a video image acquisition system. For the auxetic foams the results suggested similar behaviour to that previously reported in the literature, with significant increases in stiffness during compressive loading, and a significant dependence of the Poisson’s ratio on the applied strain. Transmissibility tests, performed in accordance with the ISO 13753 procedure for antivibration glove materials, suggested a strong dependence of the transmissibility on the foam manufacturing parameters. Within the frequency range from 10 to 31.5 Hz the transmissibility was found to be greater than 1, while it was less than 1 at all frequencies greater than 31.5 Hz. The transmissibility results were similar to the mean values for 80 resilient materials tested by Koton et. al., but were higher than the five best materials (not all polymeric) identified by the same researchers. In this study it has been suggested that the resilient behaviour of glove isolation materials should also be evaluated in terms of the indentation characteristics. A simple, linear elastic, Finite Element simulation was therefore performed, and the indentation results suggested that auxetic foams offer a significant decrease in compressive stresses with respect to conventional PU foams

    Fiscal unions redux

    Get PDF
    Before the advent of sophisticated international financial markets, a widely accepted belief was that within a monetary union, a union-wide authority orchestrating fiscal transfers between countries is necessary to provide adequate insurance against country-specific economic fluctuations. A natural question is then: Do sophisticated international financial markets obviate the need for such an active union-wide authority? We argue that they do. Specifically, we show that in a benchmark economy with no international financial markets, an activist union-wide authority is necessary to achieve desirable outcomes. With sophisticated international financial markets, however, such an authority is unnecessary if its only goal is to provide cross-country insurance. Since restricting the set of policy instruments available to member countries does not create a fiscal externality across them, this result holds in a wide variety of settings. Finally, we establish that an activist union-wide authority concerned just with providing insurance to member countries is optimal only when individual countries are either unable or unwilling to pursue desirable policies

    Comparison of Dissipative Particle Dynamics and Langevin thermostats for out-of-equilibrium simulations of polymeric systems

    Full text link
    In this work we compare and characterize the behavior of Langevin and Dissipative Particle Dynamics (DPD) thermostats in a broad range of non-equilibrium simulations of polymeric systems. Polymer brushes in relative sliding motion, polymeric liquids in Poiseuille and Couette flows, and brush-melt interfaces are used as model systems to analyze the efficiency and limitations of different Langevin and DPD thermostat implementations. Widely used coarse-grained bead-spring models under good and poor solvent conditions are employed to assess the effects of the thermostats. We considered equilibrium, transient, and steady state examples for testing the ability of the thermostats to maintain constant temperature and to reproduce the underlying physical phenomena in non-equilibrium situations. The common practice of switching-off the Langevin thermostat in the flow direction is also critically revisited. The efficiency of different weight functions for the DPD thermostat is quantitatively analyzed as a function of the solvent quality and the non-equilibrium situation.Comment: 12 pages, introduction improved, references added, to appear in Phys. Rev.

    Mean properties and Free Energy of a few hard spheres confined in a spherical cavity

    Get PDF
    We use analytical calculations and event-driven molecular dynamics simulations to study a small number of hard sphere particles in a spherical cavity. The cavity is taken also as the thermal bath so that the system thermalizes by collisions with the wall. In that way, these systems of two, three and four particles, are considered in the canonical ensemble. We characterize various mean and thermal properties for a wide range of number densities. We study the density profiles, the components of the local pressure tensor, the interface tension, and the adsorption at the wall. This spans from the ideal gas limit at low densities to the high-packing limit in which there are significant regions of the cavity for which the particles have no access, due the conjunction of excluded volume and confinement. The contact density and the pressure on the wall are obtained by simulations and compared to exact analytical results. We also obtain the excess free energy for N=4, by using a simulated-assisted approach in which we combine simulation results with the knowledge of the exact partition function for two and three particles in a spherical cavity.Comment: 11 pages, 9 figures and two table

    Static and dynamic properties of the interface between a polymer brush and a melt of identical chains

    Full text link
    Molecular dynamics simulations of a short-chain polymer melt between two brush-covered surfaces under shear have been performed. The end-grafted polymers which constitute the brush have the same chemical properties as the free chains in the melt and provide a soft deformable substrate. Polymer chains are described by a coarse-grained bead-spring model with Lennard-Jones interactions between the beads and a FENE potential between nearest neighbors along the backbone of the chains. The grafting density of the brush layer offers a way of controlling the behavior of the surface without altering the molecular interactions. We perform equilibrium and non-equilibrium Molecular Dynamics simulations at constant temperature and volume using the Dissipative Particle Dynamics thermostat. The equilibrium density profiles and the behavior under shear are studied as well as the interdigitation of the melt into the brush, the orientation on different length scales (bond vectors, radius of gyration, and end-to-end vector) of free and grafted chains, and velocity profiles. The viscosity and slippage at the interface are calculated as functions of grafting density and shear velocity.Comment: 12 pages, submitted to J Chem Phy

    Nano risk evaluation in laboratory environment by a customized layer of protection analysis approach

    Get PDF
    Nanotechnologies are widely used in various industrial settings and by the year 2020, it is expected that nearly 20 % of all products manufactured in the world will take a certain amount of nanotechnology. However, there is a substantial imbalance of knowledge between application of nanotechnology and its impact on health and environment, also considering that nanoparticle synthesis by chemical methods assumed a key role for economic, industrial and scale-up issues. The information currently available on nanomaterial risk assessment within the workplace are limited: systematic methods for assessing exposure are not known yet and the number of workers exposed is hardly estimated. This knowledge gap imposes to the scientific community the need to join efforts to provide a shared opinion on safety, health and welfare of workers who use, manipulate, or produce nanomaterials, adopting as well preventive and protective measures proportionated to the risk according to the precautionary principle. We develop a novel framework for Nano Risk Assessment within the laboratory context, by combining LOPA and HazId techniques, assigning credit factors to specific operative procedures and safety training, suitable to mitigate risk exposure and avoid over-conservative evaluations. Conclusions are drawn on applicative results and possible direction for further implementation of the approach, in view of sustainable, healthy and safe production at research and industrial level

    Enzymes Encapsulated within Alginate Hydrogels: Bioelectrocatalysis and Electrochemiluminescence Applications

    Get PDF
    A simple procedure to incorporate enzymes (horseradish peroxidase, HRP, and lactate oxidase, LOx) within alginate hydrogels is reported with electrochemiluminescence (ECL) used to detect the enzymatic reactions with the corresponding substrates. First, HRP and LOx were successfully immobilized into CaCO3 microspheres, followed by the electrostatic layer-by-layer deposition of a nanoshell onto the microspheres, and finally by their dispersion into alginate solution. The as-prepared dispersion was drop cast onto the glassy carbon electrodes and cross-linked by the external and internal gelation methods using Ca2+ cations. The enzymes encapsulated within the alginate hydrogels were characterized using cyclic voltammetry and kinetic studies performed using ECL. The results showed that the enzymatic activity was significantly maintained as a result of the immobilization, with values of the apparent Michaelis-Menten constants estimated as 7.71 ± 0.62 and 8.41 ± 0.43 μM, for HRP and LOx, respectively. The proposed biosensors showed good stability and repeatability with an estimated limit of detection of 5.38 ± 0.05 and 0.50 ± 0.03 μM for hydrogen peroxide and lactic acid, respectively. The as-prepared enzymes encapsulated within the alginate hydrogels showed good stability up to 28 days from their preparation. The sensitivity and selectivity of the enzymes encapsulated within the alginate hydrogels were tested in real matrices (HRP, hydrogen peroxide, in contact lens solution; LOx, lactic acid in artificial sweat) showing the sensitivity of the ECL detection methods for the detection of hydrogen peroxide and lactic acid in real samples

    Variación genética de poblaciones naturales de Ciprés de la Cordillera con regímenes de precipitación contrastados, en la eficiencia del uso del agua de plántulas, a través de la discriminación isotópica del carbono

    Get PDF
    Water-use efficiency (WUE) is a physiological parameter that plays a significant role in the evolutionary dynamics of many forest tree species. It can be estimated indirectly through carbon isotope discrimination (Δ). In general, plants of more arid origins have lower values of Δ. In order to study the degree of genetic control of this parameter and the genetic variation in Δ of Patagonian Cypress seedlings, three Argentinean natural populations chosen to represent two contrasting precipitation regimes were sampled in a common garden trial. The dry situation was represented by two neighboring marginal forest patches from the steppe, while the humid condition was represented by a population with 1,200 mm higher mean annual precipitation. Height (H) and Δ were measured in 246 five-year-old seedlings from 41 open-pollinated families. The factor ‘family’ had a significant effect on both variables; however heritability for Δ was found not to be significant in two out of the three populations. This could be explained by low sample size in one of them and by a real evolutionary effect in the other. An inverse association between H and Δ was verified, which is interpreted as evidence of an adaptation process at the intra-population level. The studied populations were not shown to discriminate carbon isotopes differently; hence evidence of adaptation to current environmental conditions could not be obtained. On the other hand, the arid populations proved to be quite different in terms of genetic variation, which seems to be the consequence of genetic drift and isolation.La eficiencia en el uso del agua es un parámetro fisiológico que desempeña un rol significativo en la dinámica evolutiva de muchas especies forestales. Puede estimarse indirectamente a través de la discriminación isotópica del carbono (Δ). En general, las plantas de orígenes más áridos tienen valores de Δ más bajos. Con el propósito de estudiar el grado de control genético de Δ y la variación genética en este parámetro en plántulas de Ciprés de la Cordillera, tres poblaciones naturales elegidas para representar dos regímenes de precipitación contrastados fueron muestreadas en un ensayo de ambiente común. La condición árida estuvo representada por dos fragmentos de bosque esteparios marginales, vecinos entre sí, mientras que la condición húmeda fue representada por una población con una precipitación media anual 1.200 mm superior a la de las áridas. Se midió altura total (H) y Δ en 246 plántulas de 5 años de edad correspondientes a 41 familias de polinización abierta. El factor ‘familia’ tuvo un efecto significativo en ambas variables; sin embargo, la heredabilidad para Δ no resultó significativa en dos de las tres poblaciones. En una de ellas esto podría explicarse por el restringido tamaño muestreal, mientras que en la otra por un verdadero efecto evolutivo. Asimismo se verificó una asociación inversa entre H y Δ, la cual es interpretada como evidencia de un proceso de adaptación a nivel intra-poblacional. No se observó que las poblaciones estudiadas discriminaran los isótopos del carbono de un modo diferencial, y por lo tanto no se obtuvieron evidencias de adaptación a las condiciones ambientales actuales. Por otro lado, las poblaciones áridas probaron ser muy diferentes entre sí en términos de variación genética, lo que parece ser la consecuencia de deriva y aislamiento genéticos
    corecore