826 research outputs found

    Irreducible free energy expansion and overlaps locking in mean field spin glasses

    Full text link
    We introduce a diagrammatic formulation for a cavity field expansion around the critical temperature. This approach allows us to obtain a theory for the overlap's fluctuations and, in particular, the linear part of the Ghirlanda-Guerra relationships (GG) (often called Aizenman-Contucci polynomials (AC)) in a very simple way. We show moreover how these constraints are "superimposed" by the symmetry of the model with respect to the restriction required by thermodynamic stability. Within this framework it is possible to expand the free energy in terms of these irreducible overlaps fluctuations and in a form that simply put in evidence how the complexity of the solution is related to the complexity of the entropy.Comment: 19 page

    Dark conglomerate phases of bent-core liquid crystals

    Get PDF
    Spontaneous or induced chiral symmetry breaking in achiral systems is unusual and understanding the origin of such a phenomenon has been an important area of research for several years. The optically isotropic mesophases exhibited by unconventional liquid crystals are one of the most interesting systems to investigate spontaneous chiral symmetry breaking in liquid crystal mesophases formed by achiral moieties. The dark conglomerate (DC) phases are one such optically isotropic family of phases. In this paper, a detailed account of the tendency of bent-core mesogens to form a variety of polar smectic phases, the formation of DC phases due to layers deformations and the general optical, electrical, physical properties of the DC phases are given. An example of a DC phase which exhibit distinct electro-optic properties is described with the nature of dynamics of the response and physical reasons responsible for such behaviour. The challenges and prospects of the DC phases are discussed for their potential applications in novel devices

    Probing molecular chirality by coherent optical absorption spectra

    Full text link
    We propose an approach to sensitively probe the chirality of molecules by measuring their coherent optical absorption spectra. It is shown that quantum dynamics of the cyclic three-level chiral molecules driven by appropriately-designed external fields is total-phase dependent. This will result in chirality-dependent absorption spectra for the probe field. As a consequence, these absorption spectra can be utilized to identify molecular chirality and determinate enantiomer excess. The feasibility of the proposal with chiral molecules confined in hollow-core photonic crystal fiber (HC-PCF) is also discussed.Comment: 4 pages, 4 figure

    Chiral Nanoceramics

    Full text link
    The study of different chiral inorganic nanomaterials has been experiencing rapid growth during the past decade, with its primary focus on metals and semiconductors. Ceramic materials can substantially expand the range of mechanical, optical, chemical, electrical, magnetic, and biological properties of chiral nanostructures, further stimulating theoretical, synthetic, and applied research in this area. An ever‐expanding toolbox of nanoscale engineering and self‐organization provides a chirality‐based methodology for engineering of hierarchically organized ceramic materials. However, fundamental discoveries and technological translations of chiral nanoceramics have received substantially smaller attention than counterparts from metals and semiconductors. Findings in this research area are scattered over a variety of sources and subfields. Here, the diversity of chemistries, geometries, and properties found in chiral ceramic nanostructures are summarized. They represent a compelling materials platform for realization of chirality transfer through multiple scales that can result in new forms of ceramic materials. Multiscale chiral geometries and the structural versatility of nanoceramics are complemented by their high chiroptical activity, enantioselectivity, catalytic activity, and biocompatibility. Future development in this field is likely to encompass chiral synthesis, biomedical applications, and optical/electronic devices. The implementation of computationally designed chiral nanoceramics for biomimetic catalysts and quantum information devices may also be expected.Chiral nanoceramics are emerging as a remarkably active area of chiral research. It is still in its infant stage and is thus full of challenges and opportunities. Recent advances in the diversity of chemistries, geometries, and properties of chiral ceramic nanostructures are reviewed. An outlook of synthesis, computational methods, and emerging applications of chiral nanoceramics is presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163453/2/adma201906738_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163453/1/adma201906738.pd

    On the Microscopic Origin of Cholesteric Pitch

    Get PDF
    We present a microscopic analysis of the instability of the nematic phase to chirality when molecular chirality is introduced perturbatively. We show that previously neglected short-range biaxial correlations play a crucial role in determining the cholesteric pitch. We propose an order parameter which quantifies the chirality of a molecule.Comment: RevTeX 3.0, 4 pages, one included eps figure. Published versio

    Chirality transfer and stereo-selectivity of imprinted cholesteric networks

    Full text link
    Imprinting of cholesteric textures in a polymer network is a method of preserving a macroscopically chiral phase in a system with no molecular chirality. By modifying the elastics properties of the network, the resulting stored helical twist can be manipulated within a wide range since the imprinting efficiency depends on the balance between the elastics constants and twisting power at network formation. One spectacular property of phase chirality imprinting is the created ability of the network to adsorb preferentially one stereo-component from a racemic mixture. In this paper we explore this property of chirality transfer from a macroscopic to the molecular scale. In particular, we focus on the competition between the phase chirality and the local nematic order. We demonstrate that it is possible to control the subsequent release of chiral solvent component from the imprinting network and the reversibility of the stereo-selective swelling by racemic solvents

    Observation of a Chiral State in a Microwave Cavity

    Full text link
    A microwave experiment has been realized to measure the phase difference of the oscillating electric field at two points inside the cavity. The technique has been applied to a dissipative resonator which exhibits a singularity -- called exceptional point -- in its eigenvalue and eigenvector spectrum. At the singularity, two modes coalesce with a phase difference of π/2.\pi/2 . We conclude that the state excited at the singularity has a definitiv chirality.Comment: RevTex 4, 5 figure
    corecore