671 research outputs found

    340 years of atmospheric circulation characteristics reconstructed from an eastern Antarctic Peninsula ice core

    Get PDF
    Copyright @ 2006 American Geophysical Union (AGU)Precipitation delivery mechanisms for Dolleman Island (DI), located off the east coast of the Antarctic Peninsula, are investigated using reanalysis and back trajectory data. The Southern Annular Mode (SAM) and ENSO are both shown to influence precipitation delivery and event size. Precipitation delivery variability is compared against the interannual variation of chemical data from two DI ice cores. Nitrate concentration in the cores is strongly linked with the ratio of easterly to westerly back trajectories arriving at DI, as described by a Cross-Peninsula Index (CPI) defined in this paper. This CPI is used subsequently to reconstruct the atmospheric circulation characteristics for the 340-year ice core record. The analysis highlights a period of increased easterlies during 1720–1780 and an increase in westerlies for 1950–1980, the latter concomitant with a positive SAM trend and western Peninsula warming. The reconstruction also reveals periods when polynyas may have been present in the Weddell Sea

    Chirality transfer and stereo-selectivity of imprinted cholesteric networks

    Full text link
    Imprinting of cholesteric textures in a polymer network is a method of preserving a macroscopically chiral phase in a system with no molecular chirality. By modifying the elastics properties of the network, the resulting stored helical twist can be manipulated within a wide range since the imprinting efficiency depends on the balance between the elastics constants and twisting power at network formation. One spectacular property of phase chirality imprinting is the created ability of the network to adsorb preferentially one stereo-component from a racemic mixture. In this paper we explore this property of chirality transfer from a macroscopic to the molecular scale. In particular, we focus on the competition between the phase chirality and the local nematic order. We demonstrate that it is possible to control the subsequent release of chiral solvent component from the imprinting network and the reversibility of the stereo-selective swelling by racemic solvents

    Chiral Nanoceramics

    Full text link
    The study of different chiral inorganic nanomaterials has been experiencing rapid growth during the past decade, with its primary focus on metals and semiconductors. Ceramic materials can substantially expand the range of mechanical, optical, chemical, electrical, magnetic, and biological properties of chiral nanostructures, further stimulating theoretical, synthetic, and applied research in this area. An ever‐expanding toolbox of nanoscale engineering and self‐organization provides a chirality‐based methodology for engineering of hierarchically organized ceramic materials. However, fundamental discoveries and technological translations of chiral nanoceramics have received substantially smaller attention than counterparts from metals and semiconductors. Findings in this research area are scattered over a variety of sources and subfields. Here, the diversity of chemistries, geometries, and properties found in chiral ceramic nanostructures are summarized. They represent a compelling materials platform for realization of chirality transfer through multiple scales that can result in new forms of ceramic materials. Multiscale chiral geometries and the structural versatility of nanoceramics are complemented by their high chiroptical activity, enantioselectivity, catalytic activity, and biocompatibility. Future development in this field is likely to encompass chiral synthesis, biomedical applications, and optical/electronic devices. The implementation of computationally designed chiral nanoceramics for biomimetic catalysts and quantum information devices may also be expected.Chiral nanoceramics are emerging as a remarkably active area of chiral research. It is still in its infant stage and is thus full of challenges and opportunities. Recent advances in the diversity of chemistries, geometries, and properties of chiral ceramic nanostructures are reviewed. An outlook of synthesis, computational methods, and emerging applications of chiral nanoceramics is presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163453/2/adma201906738_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163453/1/adma201906738.pd

    On the Microscopic Origin of Cholesteric Pitch

    Get PDF
    We present a microscopic analysis of the instability of the nematic phase to chirality when molecular chirality is introduced perturbatively. We show that previously neglected short-range biaxial correlations play a crucial role in determining the cholesteric pitch. We propose an order parameter which quantifies the chirality of a molecule.Comment: RevTeX 3.0, 4 pages, one included eps figure. Published versio

    Selective Adsorption and Chiral Amplification of Amino Acids in Vermiculite Clay -Implications for the origin of biochirality

    Full text link
    Smectite clays are hydrated layer silicates that, like micas, occur naturally in abundance. Importantly, they have readily modifiable interlayer spaces that provide excellent sites for nanochemistry. Vermiculite is one such smectite clay and in the presence of small chain-length alkyl-NH3Cl ions, forms sensitive, 1-D ordered model clay systems with expandable nano-pore inter-layer regions. These inter-layers readily adsorb organic molecules. N-propyl NH3Cl vermiculite clay gels were used to determine the adsorption of alanine, lysine and histidine by chiral HPLC. The results show that during reaction with fresh vermiculite interlayers, significant chiral enrichment of either L- and D-enantiomers occurs depending on the amino acid. Chiral enrichment of the supernatant solutions is up to about 1% per pass. In contrast, addition to clay interlayers already reacted with amino acid solutions resulted in little or no change in D/L ratio during the time of the experiment. Adsorption of small amounts of amphiphilic organic molecules in clay inter-layers is known to produce Layer-by-Layer or Langmuir-Blodgett films. Moreover atomistic simulations show that self-organization of organic species in clay interlayers is important. These non-centrosymmetric, chirally active nanofilms may cause clays to act subsequently as chiral amplifiers, concentrating organic material from dilute solution and having different adsorption energetics for D- and L-enantiomers. The additional role of clays in RNA oligimerization already postulated by Ferris and others, together with the need for the organization of amphiphilic molecules and lipids noted by Szostak and others, suggests that such chiral separation by clays in lagoonal environments at normal biological temperatures might also have played a significant role in the origin of biochirality.Comment: 17 Pages, 2 Figures, 4 Table

    Stochastic Approach to Enantiomeric Excess Amplification and Chiral Symmetry Breaking

    Full text link
    Stochastic aspects of chemical reaction models related to the Soai reactions as well as to the homochirality in life are studied analytically and numerically by the use of the master equation and random walk model. For systems with a recycling process, a unique final probability distribution is obtained by means of detailed balance conditions. With a nonlinear autocatalysis the distribution has a double-peak structure, indicating the chiral symmetry breaking. This problem is further analyzed by examining eigenvalues and eigenfunctions of the master equation. In the case without recycling process, final probability distributions depend on the initial conditions. In the nonlinear autocatalytic case, time-evolution starting from a complete achiral state leads to a final distribution which differs from that deduced from the nonzero recycling result. This is due to the absence of the detailed balance, and a directed random walk model is shown to give the correct final profile. When the nonlinear autocatalysis is sufficiently strong and the initial state is achiral, the final probability distribution has a double-peak structure, related to the enantiomeric excess amplification. It is argued that with autocatalyses and a very small but nonzero spontaneous production, a single mother scenario could be a main mechanism to produce the homochirality.Comment: 25 pages, 6 figure
    corecore