172 research outputs found

    Human Fallopian Tube Mesenchymal Stromal Cells Enhance Bone Regeneration in a Xenotransplanted Model

    Get PDF
    We have recently reported that human fallopian tubes, which are discarded during surgical procedures of women submitted to sterilization or hysterectomies, are a rich source of human fallopian tube mesenchymal stromal cells (htMSCs). It has been previously shown that human mesenchymal stromal cells may be useful in enhancing the speed of bone regeneration. This prompted us to investigate whether htMSCs might be useful for the treatment of osteoporosis or other bone diseases, since they present a pronounced capacity for osteogenic differentiation in vitro. Based on this prior knowledge, our aim was to evaluate, in vivo, the osteogenic capacity of htMSCs to regenerate bone through an already described xenotransplantation model: nonimmunosuppressed (NIS) rats with cranial defects. htMSCs were obtained from five 30–50 years old healthy women and characterized by flow cytometry and for their multipotenciality in vitro capacity (osteogenic, chondrogenic and adipogenic differentiations). Two symmetric full-thickness cranial defects on each parietal region of seven NIS rats were performed. The left side (LS) of six animals was covered with CellCeram (Scaffdex)—a bioabsorbable ceramic composite scaffold that contains 60% hydroxyapatite and 40% β-tricalciumphosphate—only, and the right side (RS) with the CellCeram and htMSCs (106 cells/scaffold). The animals were euthanized at 30, 60 and 90 days postoperatively and cranial tissue samples were taken for histological analysis. After 90 days we observed neobone formation in both sides. However, in animals euthanized 30 and 60 days after the procedure, a mature bone was observed only on the side with htMSCs. PCR and immunofluorescence analysis confirmed the presence of human DNA and thus that human cells were not rejected, which further supports the imunomodulatory property of htMSCs. In conclusion, htMSCs can be used successfully to enhance bone regeneration in vivo, opening a new field for future treatments of osteoporosis and bone reconstruction

    Contribution of polymorphisms in genes associated with craniofacial development to the risk of nonsyndromic cleft lip and/or palate in the Brazilian population

    Get PDF
    Background and Objective: Nonsyndromic cleft lip and/or palate (NSCL/P) is a complex disease associated with both genetic and environmental factors. One strategy for identifying of possible NSCL/P genetic causes is to evaluate polymorphic variants in genes involved in the craniofacial development. Design: We carried out a case-control analysis of 13 single nucleotide polymorphisms in 9 genes related to craniofacial development, including TBX1, PVRL1, MID1, RUNX2, TP63, TGFB3, MSX1, MYH9 and JAG2 , in 367 patients with NSCL/P and 413 unaffected controls from Brazil to determine their association with NSCL/P. Results: Four out of 13 polymorphisms (rs28649236 and rs4819522 of TBX1, rs7940667 of PVRL1 and rs1057744 of JAG2 ) were presented in our population. Comparisons of allele and genotype frequencies revealed that the G variant allele and the AG/GG genotypes of TBX1 rs28649236 occurred in a frequency significantly higher in controls than in the NSCL/P group (OR: 0.41; 95% CI: 0.25-0.67; p=0.0002). The frequencies of rs4819522, rs7940667 and rs1057744 minor alleles and genotypes were similar between control and NSCL/P group, without significant differences. No significant associations among cleft types and polymorphisms were observed. Conclusion: The study suggests for the first time evidences to an association of the G allele of TBX1 rs28649236 polymorphism and NSCL/P

    Zebrafish sp7 mutants show tooth cycling independent of attachment, eruption and poor differentiation of teeth

    Get PDF
    The capacity to fully replace teeth continuously makes zebrafish an attractive model to explore regeneration and tooth development. The requirement of attachment bone for the appearance of replacement teeth has been hypothesized but not yet investigated. The transcription factor sp7 (osterix) is known in mammals to play an important role during odontoblast differentiation and root formation. Here we study tooth replacement in the absence of attachment bone using sp7 zebrafish mutants. We analysed the pattern of tooth replacement at different stages of development and demonstrated that in zebrafish lacking sp7, attachment bone is never present, independent of the stage of tooth development or fish age, yet replacement is not interrupted. Without bone of attachment we observed abnormal orientation of teeth, and abnormal connection of pulp cavities of predecessor and replacement teeth. Mutants lacking sp7 show arrested dentinogenesis, with non-polarization of odontoblasts and only a thin layer of dentin deposited. Osteodast activity was observed in sp7 mutants; due to the lack of bone of attachment, remodelling was diminished but nevertheless present along the pharyngeal bone. We conclude that tooth replacement is ongoing in the sp7 mutant despite poor differentiation and defective attachment. Without bone of attachment tooth orientation and pulp organization are compromised

    Evidence for DNA methylation mediating genetic liability to non-syndromic cleft lip/palate

    Get PDF
    Aim: To determine if nsCL/P genetic risk variants influence liability to nsCL/P through gene regulation pathways, such as those involving DNA methylation. Materials and Methods: nsCL/P genetic summary data and methylation data from four studies were used in conjunction with Mendelian randomization and joint likelihood mapping to investigate potential mediation of nsCL/P genetic variants. Results and conclusion: Evidence was found at VAX1 (10q25.3), LOC146880 (17q23.3) and NTN1 (17p13.1), that liability to nsCL/P and variation in DNA methylation might be driven by the same genetic variant, suggesting that genetic variation at these loci may increase liability to nsCL/P by influencing DNA methylation. Follow up analyses using different tissues and gene expression data provided further insight into possible biological mechanisms

    Movement of the external ear in human embryo

    Get PDF
    Introduction: External ears, one of the major face components, show an interesting movement during craniofacial morphogenesis in human embryo. The present study was performed to see if movement of the external ears in a human embryo could be explained by differential growth. Methods: In all, 171 samples between Carnegie stage (CS) 17 and CS 23 were selected from MR image datasets of human embryos obtained from the Kyoto Collection of Human Embryos. The three-dimensional absolute positio

    Updated consensus guidelines on the management of Phelan–McDermid syndrome

    Get PDF
    Phelan–McDermid syndrome (PMS) is a genetic condition caused by SHANK3 haploinsufficiency and characterized by a wide range of neurodevelopmental and systemic manifestations. The first practice parameters for assessment and monitoring in individuals with PMS were published in 2014; recently, knowledge about PMS has grown significantly based on data from longitudinal phenotyping studies and large-scale genotype–phenotype investigations. The objective of these updated clinical management guidelines was to: (1) reflect the latest in knowledge in PMS and (2) provide guidance for clinicians, researchers, and the general community. A taskforce was established with clinical experts in PMS and representatives from the parent community. Experts joined subgroups based on their areas of specialty, including genetics, neurology, neurodevelopment, gastroenterology, primary care, physiatry, nephrology, endocrinology, cardiology, gynecology, and dentistry. Taskforce members convened regularly between 2021 and 2022 and produced specialty-specific guidelines based on iterative feedback and discussion. Taskforce leaders then established consensus within their respective specialty group and harmonized the guidelines. The knowledge gained over the past decade allows for improved guidelines to assess and monitor individuals with PMS. Since there is limited evidence specific to PMS, intervention mostly follows general guidelines for treating individuals with developmental disorders. Significant evidence has been amassed to guide the management of comorbid neuropsychiatric conditions in PMS, albeit mainly from caregiver report and the experience of clinical experts. These updated consensus guidelines on the management of PMS represent an advance for the field and will improve care in the community. Several areas for future research are also highlighted and will contribute to subsequent updates with more refined and specific recommendations as new knowledge accumulates

    Heterozygous Mutations of FREM1 Are Associated with an Increased Risk of Isolated Metopic Craniosynostosis in Humans and Mice

    Get PDF
    The premature fusion of the paired frontal bones results in metopic craniosynostosis (MC) and gives rise to the clinical phenotype of trigonocephaly. Deletions of chromosome 9p22.3 are well described as a cause of MC with variably penetrant midface hypoplasia. In order to identify the gene responsible for the trigonocephaly component of the 9p22.3 syndrome, a cohort of 109 patients were assessed by high-resolution arrays and MLPA for copy number variations (CNVs) involving 9p22. Five CNVs involving FREM1, all of which were de novo variants, were identified by array-based analyses. The remaining 104 patients with MC were then subjected to targeted FREM1 gene re-sequencing, which identified 3 further mutant alleles, one of which was de novo. Consistent with a pathogenic role, mouse Frem1 mRNA and protein expression was demonstrated in the metopic suture as well as in the pericranium and dura mater. Micro-computed tomography based analyses of the mouse posterior frontal (PF) suture, the human metopic suture equivalent, revealed advanced fusion in all mice homozygous for either of two different Frem1 mutant alleles, while heterozygotes exhibited variably penetrant PF suture anomalies. Gene dosage-related penetrance of midfacial hypoplasia was also evident in the Frem1 mutants. These data suggest that CNVs and mutations involving FREM1 can be identified in a significant percentage of people with MC with or without midface hypoplasia. Furthermore, we present Frem1 mutant mice as the first bona fide mouse model of human metopic craniosynostosis and a new model for midfacial hypoplasia

    Human Stem Cell Cultures from Cleft Lip/Palate Patients Show Enrichment of Transcripts Involved in Extracellular Matrix Modeling By Comparison to Controls

    Get PDF
    Nonsyndromic cleft lip and palate (NSCL/P) is a complex disease resulting from failure of fusion of facial primordia, a complex developmental process that includes the epithelial-mesenchymal transition (EMT). Detection of differential gene transcription between NSCL/P patients and control individuals offers an interesting alternative for investigating pathways involved in disease manifestation. Here we compared the transcriptome of 6 dental pulp stem cell (DPSC) cultures from NSCL/P patients and 6 controls. Eighty-seven differentially expressed genes (DEGs) were identified. The most significant putative gene network comprised 13 out of 87 DEGs of which 8 encode extracellular proteins: ACAN, COL4A1, COL4A2, GDF15, IGF2, MMP1, MMP3 and PDGFa. Through clustering analyses we also observed that MMP3, ACAN, COL4A1 and COL4A2 exhibit co-regulated expression. Interestingly, it is known that MMP3 cleavages a wide range of extracellular proteins, including the collagens IV, V, IX, X, proteoglycans, fibronectin and laminin. It is also capable of activating other MMPs. Moreover, MMP3 had previously been associated with NSCL/P. The same general pattern was observed in a further sample, confirming involvement of synchronized gene expression patterns which differed between NSCL/P patients and controls. These results show the robustness of our methodology for the detection of differentially expressed genes using the RankProd method. In conclusion, DPSCs from NSCL/P patients exhibit gene expression signatures involving genes associated with mechanisms of extracellular matrix modeling and palate EMT processes which differ from those observed in controls. This comparative approach should lead to a more rapid identification of gene networks predisposing to this complex malformation syndrome than conventional gene mapping technologies

    Effect of the G375C and G346E Achondroplasia Mutations on FGFR3 Activation

    Get PDF
    Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism
    corecore