1,269 research outputs found

    On the spectrum of the AdS(5) x S-5 string at large lambda

    Get PDF
    archiveprefix: arXiv primaryclass: hep-th reportnumber: HU-EP-10-85 slaccitation: %%CITATION = ARXIV:1012.4471;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: HU-EP-10-85 slaccitation: %%CITATION = ARXIV:1012.4471;%

    Density Functional Theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes

    Get PDF
    To explore the potential of molecular gas treatment of freshly cut lithium foils in non-electrolyte based passivation of high energy-density Li anodes, density functional theory (DFT) has been used to study the decomposition of molecular gases on metallic lithium surfaces. By combining DFT geometry optimization and Molecular Dynamics, the effects of atmospheric (N2, O2, CO2) and hazardous (F2, SO2) gas decomposition on Li(bcc) (100), (110), and (111) surfaces on relative surface energies, work functions, and emerging electronic and elastic properties are investigated. The simulations suggest that exposure to different molecular gases can be used to induce and control reconstructions of the metal Li surface and substantial changes (up to over 1 eV) in the work function of the passivated system. Contrary to the other considered gases, which form metallic adlayers, SO2 treatment emerges as the most effective in creating an insulating passivation layer for dosages <= 1 mono-layer. The substantial Li->adsorbate charge transfer and adlayer relaxation produce marked elastic stiffening of the interface, with the smallest change shown by nitrogen-treated adlayers

    A note on the integral equation for the Wilson loop in N = 2 D=4 superconformal Yang-Mills theory

    Full text link
    We propose an alternative method to study the saddle point equation in the strong coupling limit for the Wilson loop in N=2\mathcal{N}=2 D=4 super Yang-Mills with an SU(N) gauge group and 2N hypermultiplets. This method is based on an approximation of the integral equation kernel which allows to solve the simplified problem exactly. To determine the accuracy of this approximation, we compare our results to those obtained recently by Passerini and Zarembo. Although less precise, this simpler approach provides an explicit expression for the density of eigenvalues that is used to derive the planar free energy.Comment: 12 pages, v2: section 2.5 (Free Energy) amended and reference added, to appear in J. Phys.

    The Emergence of Aqueous Ammonium-Ion Batteries

    Get PDF
    Aqueous ammonium-ion (NH4+) batteries (AAIB) are a recently emerging technology that utilize the abundant electrode resources and the fast diffusion kinetics of NH4_{4}+^{+} to deliver an excellent rate performance at a low cost. Although significant progress has been made on AAIBs, the technology is still limited by various challenges. In this Minireview, the most recent advances are comprehensively summarized and discussed, including cathode and anode materials as well as the electrolytes. Finally, a perspective on possible solutions for the current limitations of AAIBs is provided

    Tailoring the release of drugs having different water solubility by hybrid polymer-lipid microparticles with a biphasic structure

    Get PDF
    The aim of this study is to investigate the potential of hybrid polymer-lipid microparticles with a biphasic structure (b-MPs) as drug delivery system. Hybrid b-MPs of Compritol &amp; REG;888 ATO as main lipid constituent of the shell and polyethylene glycol 400 as core material were produced by an innovative solvent-free approach based on spray congealing. To assess the suitability of hybrid b-MPs to encapsulate various types of APIs, three model drugs (fluconazole, tolbutamide and nimesulide) with extremely different water solubility were loaded into the polymeric core. The hybrid systems were characterized in terms of particle size, morphology and physical state. Various techniques (e.g. optical, Confocal Raman and Scanning Electron Microscopy) were used to investigate the influence of the drugs on different aspects of the b-MPs, including external and internal morphology, properties at the lipid/polymer interface and drug distribution. Hybrid b-MPs were suitable for the encapsulation of all drugs (encapsulation efficiency &gt; 90 %) regardless the drug hydrophobic/hydrophilic properties. Finally, the drug release behaviors from hybrid b-MPs were studied and compared with traditional solid lipid MPs (consisting of only the lipid carrier). Due to the combination of lipid and polymeric materials, hybrid b-MPs showed a wide array of release profiles that depends on their composition, the type of loaded drug, the drug loading amount and location, providing a versatile platform and allowing the formulators to finely balance the release performance of drugs intended for oral administration. Overall, the study demonstrates that hybrid, solvent-free b-MPs produced by spray congealing are an extremely versatile delivery platform able to efficiently encapsulate and release very different types of drug compounds

    Wilson Loops in N=2 Super-Yang-Mills from Matrix Model

    Full text link
    We compute the expectation value of the circular Wilson loop in N=2 supersymmetric Yang-Mills theory with N_f=2N hypermultiplets. Our results indicate that the string tension in the dual string theory scales as the logarithm of the 't Hooft coupling.Comment: 37 pages, 9 figures; v2: Numerical factors corrected, simple derivation of Wilson loop and discussion of continuation to complex lambda added; v3: instanton partition function re-analyzed in order to take into account a contribution of the hypermultiplet

    Localised degradation within sulfide-based all-solid-state electrodes visualised by Raman mapping

    Get PDF
    The distribution of degradation products, before and after cycling, within common sulfide-based solid electrolytes (β-Li3_3PS4_4, Li6_6PS5_5Cl and Li10_{10}GeP2_2S12_{12}) was mapped using Raman microscopy. All composite electrodes displayed the appearance of side reaction products after the initial charge-discharge cycle, located at the site of a LiNi0.6_{0.6}Mn0.2_{0.2}Co0.2_{0.2}O2_2 particle

    Scalable Synthesis of Microsized, Nanocrystalline Zn0.9_{0.9}Fe0.1_{0.1}O-C Secondary Particles and Their Use in Zn0.9_{0.9}Fe0.1_{0.1} O-C/LiNi0.5_{0.5}Mn1.5_{1.5}O4_{4} Lithium-Ion Full Cells

    Get PDF
    Conversion/alloying materials (CAMs) are a potential alternative to graphite as Li‐ion anodes, especially for high‐power performance. The so far most investigated CAM is carbon‐coated Zn0.9_{0.9}Fe0.1_{0.1}O, which provides very high specific capacity of more than 900 mAh g−1^{-1} and good rate capability. Especially for the latter the optimal particle size is in the nanometer regime. However, this leads to limited electrode packing densities and safety issues in large‐scale handling and processing. Herein, a new synthesis route including three spray‐drying steps that results in the formation of microsized, spherical secondary particles is reported. The resulting particles with sizes of 10–15 μm are composed of carbon‐coated Zn0.9_{0.9}Fe0.1_{0.1}O nanocrystals with an average diameter of approximately 30–40 nm. The carbon coating ensures fast electron transport in the secondary particles and, thus, high rate capability of the resulting electrodes. Coupling partially prelithiated, carbon‐coated Zn0.9_{0.9}Fe0.1_{0.1}O anodes with LiNi0.5_{0.5}Mn1.5_{1.5}O4_{4} cathodes results in cobalt‐free Li‐ion cells delivering a specific energy of up to 284 Wh kg−1^{-1} (at 1 C rate) and power of 1105 W kg−1 (at 3 C) with remarkable energy efficiency (>93 % at 1 C and 91.8 % at 3 C)
    • …
    corecore