3,737 research outputs found
FROM THE CONCEPT OF MULTIFUNCTIONAL AGRICULTURE TO THE MEASURE OF MULTIFUNCTIONAL FARMING
The objective of this paper is to deeply analyze some of the theoretical and methodological implications linked to the definition, the characterization, the evaluation and the estimation of the economic results of a multifunction agricultural farm. A deep study of these aspects seems essential for two reasons. On one hand, society is pressing farms to enlarge the existing set of goods and services; on the other hand, sector policies offer to farms new opportunities, which regard the allocation of services linked to the different functions that agriculture is able to carry out. In these conditions, in order to make the entrepreneur able to decide which services to set in motion, considering the economical input that their activation could bring to the farm, it is fundamental to identify an analytic method that is capable to estimate and evaluate the economic results of a multifunction farm.Multifunctionality, Economic indicators, Rural development, Agribusiness, Labor and Human Capital, Teaching/Communication/Extension/Profession,
Coupling centennial-scale shoreline change to sea-level rise and coastal morphology in the Gulf of Mexico using a Bayesian network
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth's Future 4 (2016): 143–158, doi:10.1002/2015EF000331.Predictions of coastal evolution driven by episodic and persistent processes associated with storms and relative sea-level rise (SLR) are required to test our understanding, evaluate our predictive capability, and to provide guidance for coastal management decisions. Previous work demonstrated that the spatial variability of long-term shoreline change can be predicted using observed SLR rates, tide range, wave height, coastal slope, and a characterization of the geomorphic setting. The shoreline is not sufficient to indicate which processes are important in causing shoreline change, such as overwash that depends on coastal dune elevations. Predicting dune height is intrinsically important to assess future storm vulnerability. Here, we enhance shoreline-change predictions by including dune height as a variable in a statistical modeling approach. Dune height can also be used as an input variable, but it does not improve the shoreline-change prediction skill. Dune-height input does help to reduce prediction uncertainty. That is, by including dune height, the prediction is more precise but not more accurate. Comparing hindcast evaluations, better predictive skill was found when predicting dune height (0.8) compared with shoreline change (0.6). The skill depends on the level of detail of the model and we identify an optimized model that has high skill and minimal overfitting. The predictive model can be implemented with a range of forecast scenarios, and we illustrate the impacts of a higher future sea-level. This scenario shows that the shoreline change becomes increasingly erosional and more uncertain. Predicted dune heights are lower and the dune height uncertainty decreases.This work was supported by the USGS
Coastal and Marine Geology Program
and the USGS Southeast Regional
Assessment Project
Kaon physics with the KLOE detector
In this paper we discuss the recent finalized analyses by the KLOE experiment
at DANE: the CPT and Lorentz invariance test with entangled pairs, and the precision measurement of the branching fraction of
the decay . We also present the
status of an ongoing analysis aiming to precisely measure the mass
Atomic force microscopy techniques for nanomechanical characterization : a polymer case study
Atomic force microscopy (AFM) is a versatile tool to perform mechanical
characterization of surface samples at the nanoscale. In this work, we review
two of such methods, namely contact resonance AFM (CR-AFM) and torsional
harmonics AFM (TH-AFM). First, such techniques are illustrated and their
applicability on materials with elastic moduli in different ranges are discussed,
together with their main advantages and limitations. Then, a case
study is presented in which we report the mechanical characterization using
both CR-AFM and TH-AFM of polyaniline and polyaniniline doped with
nanodiamond particles tablets prepared by a pressing process. We determined
the indentation modulus values of their surfaces, which were found in fairly
good agreement, thus demonstrating the accuracy of the techniques. Finally,
the determined surface elastic moduli have been compared with the bulk ones
measured through standard indentation testing.
INTRODUCTION
In the field of nanotechnology, the development of
innovative and nondestructive characterization
techniques plays a crucial role. Indeed, the characterization
of nanostructured hybrid materials (e.g.,
thin films and nanocomposites) and devices requires
the capability of acquiring maps of the local mechanical
properties at the nanoscale. Nanoindentation
is the most common method for determining the
mechanical properties of thin films. However, its
applicability is strictly limited by the thickness of
the sample. Furthermore, its poor spatial resolution
does not allow the reconstruction of an accurate
distribution of the sample surface mechanical
properties. For this reason, alternative methods,
based on atomic force microscopy (AFM), have been
developed. By exploiting the high resolution of the
AFM, maps of the surface mechanical properties
(i.e., indentation modulus) can be achieved. Among
these techniques, AFM nanoindentation1 is the
simplest method used to evaluate the local mechanical
properties o
Self-assembling of calcium salt of the new DNA base 5-carboxylcytosine
Supramolecular architectures involving DNA bases can have a strong impact in several fields such as nanomedicine and nanodevice manufacturing. To date, in addition to the four canonical nucleobases (adenine, thymine, guanine and cytosine), four other forms of cytosine modified at the 5 position have been identified in DNA. Among these four new cytosine derivatives, 5-carboxylcytosine has been recently discovered in mammalian stem cell DNA, and proposed as the final product of the oxidative epigenetic demethylation pathway on the 5 position of cytosine. In this work, a calcium salt of 5-carboxylcytosine has been synthesized and deposited on graphite surface, where it forms self-assembled features as long range monolayers and up to one micron long filaments. These structures have been analyzed in details combining different theoretical and experimental approaches: X-ray single-crystal diffraction data were used to simulate the molecule-graphite interaction, first using molecular dynamics and then refining the results using density functional theory (DFT); finally, data obtained with DFT were used to rationalize atomic force microscopy (AFM) results
Precision measurement of the Dalitz plot distribution with the KLOE detector
Using fb of data collected with
the KLOE detector at DANE, the Dalitz plot distribution for the decay is studied with the world's largest sample of events. The Dalitz plot density is parametrized as a polynomial
expansion up to cubic terms in the normalized dimensionless variables and
. The experiment is sensitive to all charge conjugation conserving terms of
the expansion, including a term. The statistical uncertainty of all
parameters is improved by a factor two with respect to earlier measurements.Comment: 11 pages, 9 figures, supplement: an ascii tabl
Vitamin A, cancer treatment and prevention: The new role of cellular retinol binding proteins
Retinol and vitamin A derivatives influence cell differentiation, proliferation, and apoptosis and play an important physiologic role in a wide range of biological processes. Retinol is obtained from foods of animal origin. Retinol derivatives are fundamental for vision, while retinoic acid is essential for skin and bone growth. Intracellular retinoid bioavailability is regulated by the presence of specific cytoplasmic retinol and retinoic acid binding proteins (CRBPs and CRABPs). CRBP-1, the most diffuse CRBP isoform, is a small 15 KDa cytosolic protein widely expressed and evolutionarily conserved in many tissues. CRBP-1 acts as chaperone and regulates the uptake, subsequent esterification, and bioavailability of retinol. CRBP-1 plays a major role in wound healing and arterial tissue remodelling processes. In the last years, the role of CRBP-1-related retinoid signalling during cancer progression became object of several studies. CRBP-1 downregulation associates with a more malignant phenotype in breast, ovarian, and nasopharyngeal cancers. Reexpression of CRBP-1 increased retinol sensitivity and reduced viability of ovarian cancer cells in vitro. Further studies are needed to explore new therapeutic strategies aimed at restoring CRBP-1-mediated intracellular retinol trafficking and the meaning of CRBP-1 expression in cancer patients' screening for a more personalized and efficacy retinoid therapy
Measurement of the production of the four-fermion final states mediated by non-ZZ neutral current processes
Measurement of the production of the four-fermion final states mediated by neutral current processes
- …
