17 research outputs found
The Timing and Strength of Regional Brain Activation Associated with Word Recognition in Children with Reading Difficulties
The study investigates the relative degree and timing of cortical activation across parietal, temporal, and frontal regions during performance of a continuous visual-word recognition task in children who experience reading difficulties (N = 44, RD) and typical readers (N = 40, NI). Minimum norm estimates of regional neurophysiological activity were obtained from magnetoencephalographic recordings. Children with RD showed bilaterally reduced neurophysiological activity in the superior and middle temporal gyri, and increased activity in rostral middle frontal and ventral occipitotemporal cortices, bilaterally. The temporal profile of activity in the RD group, featured near-simultaneous activity peaks in temporal, inferior parietal, and prefrontal regions, in contrast to a clear temporal progression of activity among these areas in the NI group. These results replicate and extend previous MEG and fMRI results demonstrating atypical, latency-dependent attributes of the brain circuit involved in word reading in children with reading difficulties
Prevention Focus Relates to Performance on a Loss-Framed Inhibitory Control Task
Information framing can be critical to the impact of information and can affect individuals differently. One contributing factor is a person’s regulatory focus, which describes their focus on achieving gains vs. avoiding losses. We hypothesized that alignment between individual regulatory focus and the framing of performance feedback as either gain or loss would enhance performance improvements from computer-based training. We measured participants’ (N = 93) trait-level regulatory focus; they then trained in a go/no-go inhibitory control task with feedback framed as gains, losses, or control feedback conditions. Some changes in performance with training (correct rejection rate and response time) were consistent with regulatory fit, but only in the loss-framed condition. This suggests that regulatory fit is more complex than cursory categorization of trait regulatory focus and feedback framing might indicate. Regulatory fit, feedback framing, and task affordances should be considered when designing feedback or including game-like feedback elements to aid computer-based training
Prevention focus relates to performance on a loss-framed inhibitory control task
Information framing can be critical to the impact of information and can affect individuals differently. One contributing factor is a person's regulatory focus, which describes their focus on achieving gains or avoiding losses. We hypothesized that alignment between individual regulatory focus and the framing of performance feedback as either gain or loss would enhance performance gains from training. We measured participants’ (N=93) trait-level regulatory focus; they then trained in a go/no-go inhibitory control task with feedback framed as gains, losses, or control feedback conditions. Some changes in performance with training (correct rejection rate and response time) were consistent with regulatory fit, but only in the loss-framed condition. This suggests that regulatory fit is more complex than cursory categorization of trait regulatory focus and feedback framing might indicate. Regulatory fit, feedback framing, and task affordances should be considered when designing feedback or including game-like feedback elements to aid training
Prevention focus relates to performance on a loss-framed inhibitory control task
Information framing can be critical to the impact of information and can affect individuals differently. One contributing factor is a person's regulatory focus, which describes their focus on achieving gains or avoiding losses. We hypothesized that alignment between individual regulatory focus and the framing of performance feedback as either gain or loss would enhance performance gains from training. We measured participants’ (N=93) trait-level regulatory focus; they then trained in a go/no-go inhibitory control task with feedback framed as gains, losses, or control feedback conditions. Some changes in performance with training (correct rejection rate and response time) were consistent with regulatory fit, but only in the loss-framed condition. This suggests that regulatory fit is more complex than cursory categorization of trait regulatory focus and feedback framing might indicate. Regulatory fit, feedback framing, and task affordances should be considered when designing feedback or including game-like feedback elements to aid training
Optimizing estimation of hemispheric dominance for language using magnetic source imaging
The efficacy of magnetoencephalography (MEG) as an alternative to invasive methods for investigating the cortical representation of language has been explored in several studies. Recently, studies comparing MEG to the gold standard Wada procedure have found inconsistent and often less-than accurate estimates of laterality across various MEG studies. Here we attempted to address this issue among normal right-handed adults (N = 12) by supplementing a well-established MEG protocol involving word recognition and the single dipole method with a sentence comprehension task and a beamformer approach localizing neural oscillations. Beamformer analysis of word recognition and sentence comprehension tasks revealed a desynchronization in the 10–18 Hz range, localized to the temporo-parietal cortices. Inspection of individual profiles of localized desynchronization (10–18 Hz) revealed left hemispheric dominance in 91.7% and 83.3% of individuals during the word recognition and sentence comprehension tasks, respectively. In contrast, single dipole analysis yielded lower estimates, such that activity in temporal language regions was left-lateralized in 66.7% and 58.3% of individuals during word recognition and sentence comprehension, respectively. The results obtained from the word recognition task and localization of oscillatory activity using a beamformer appear to be in line with general estimates of left hemispheric dominance for language in normal right-handed individuals. Furthermore, the current findings support the growing notion that changes in neural oscillations underlie critical components of linguistic processing
Explorations of object and location memory using fMRI
Content-specific sub-systems of visual working memory (VWM) have been explored in many neuroimaging studies with inconsistent findings and procedures across experiments. The present study employed functional magnetic resonance imaging (fMRI) and a change detection task using a high number of trials and matched stimulus displays across object and location change ("what" vs "where") conditions. Furthermore, individual task periods were studied independently across conditions to identify period-specific differences. Importantly, this combination of task controls has not previously been described in the fMRI literature. Composite results revealed differential frontoparietal activation during each task period. A separation of object and location conditions yielded a distributed system of dorsal and ventral streams during the encoding of information corresponding to bilateral inferior parietal lobule (IPL) and lingual gyrus activation, respectively. Differential activity was also shown during the maintenance of information in middle frontal structures bilaterally for objects and the right IPL and left insula for locations. Together, these results reflect a domain-specific dissociation spanning several cortices and task periods. Furthermore, differential activations suggest a general caudal-rostral separation corresponding to object and location memory, respectively
Time course of electromagnetic activity associated with detection of rare events
The neural origins of the cortical response to rare sensory events remain poorly understood. Using simultaneous event-related potentials and magnetic resonance imaging, we investigated the anatomical profile of regional activity at various processing stages during performance of auditory and visual variants of an oddball paradigm. The earliest rarity-detection response was found in sensory-specific cortices, rapidly spreading to tertiary association areas, mesial temporal and frontal cortices by 150–200 ms. P3m-related activity was not found in sensory-specific cortices. On the basis of the anatomic distribution of P3m-related activity, this component is likely to reflect more generalized cognitive abilities hosted by association cortical regions
Aberrant spatiotemporal activation profiles associated with math difficulties in children: A magnetic source imaging study
The study investigates the relative degree and timing of cortical activation in parietal, temporal, and frontal regions during simple arithmetic tasks in children who experience math difficulties. Real-time brain activity was measured with magnetoencephalography during simple addition and numerosity judgments in students with math difficulties and average or above average reading skills (MD group, N = 14), students with below average scores on both math and basic reading tests (MD/RD group, N = 16) and students with above average scores on standardized math tests (control group, N = 25). Children with MD showed increased degree of neurophysiological activity in inferior and superior parietal regions in the right hemisphere compared to both controls and MD/RD students. Left hemisphere inferior parietal regions did not show the expected task-related changes and showed activity at a significant temporal delay. MD students also showed increased early engagement of prefrontal cortices. Taken together, these findings may indicate increased reliance on a network of right hemisphere parietal (and possibly frontal areas as well) for simple math calculations in students who experience math difficulties but perform within normal range in reading