177 research outputs found

    New aspects of operando Raman spectroscopy applied to electrochemical CO2 reduction on Cu foams

    Get PDF
    The mechanism of electrochemical CO2 reduction (CO2RR) on copper surfaces is still insufficiently understood. Operando Raman spectroscopy is ideally suited to elucidate the role of adsorbed reaction intermediates and products. For a Cu foam material which has been previously characterized regarding electrochemical properties and product spectrum, 129 operando spectra are reported, covering the spectral range from 250 to 3300 cm−1. (1) The dendritic foam structure facilitates surface-enhanced Raman spectroscopy (SERS) and thus electrochemical operando spectroscopy, without any further surface manipulations. (2) Both Raman enhancement and SERS background depend strongly on the electric potential and the “history” of preceding potential sequences. (3) To restore the plausible intensity dependencies of Raman bands, normalization to the SERS background intensity is proposed. (4) Two distinct types of *CO adsorption modes are resolved. (5) Hysteresis in the potential-dependent *CO desorption supports previous electrochemical analyses; saturating *CO adsorption may limit CO formation rates. (6) HCO3− likely deprotonates upon adsorption so that exclusively adsorbed carbonate is detectable, but with strong dependence on the preceding potential sequences. (7) A variety of species and adsorption modes of reaction products containing C—H bonds were detected and compared to reference solutions of likely reaction products, but further investigations are required for assignment to specific molecular species. (8) The Raman bands of adsorbed reaction products depend weakly or strongly on the preceding potential sequences. In future investigations, suitably designed potential protocols could provide valuable insights into the potential-dependent kinetics of product formation, adsorption, and desorption

    The Certification of Employment Contracts: A Legal Instrument for Labour Market Regulation in Italy

    Get PDF
    In a perspective of indirect regulation of the labour market, this paper analyses the Italian legal procedure known as ‘certification of employment contracts’ (hereinafter ‘certification’). This procedure consists of an examination of the lawfulness of employment and supply chain contracts. Contracts are submitted to a panel of experts in labour law (civil servants, professionals, academics) who undertake a review of the documentation, perform advisory functions and decide whether to award certification or not. The panel takes into account the key principles underlying certification: fairness, the true nature of the agreement between the parties, and compliance of the contract with objective organizational and productive requirements. Certification seeks to enforce labour standards through the proper use of contractual models, in order to manifest the true intention of the parties and to represent their interests. In this paper the issue is addressed from a regulatory perspective. First, it is noted that all employment and supply chain contracts are eligible for certification. Although apparently different, these contracts share a common matrix: the global process of ‘vertical disintegration’ of the firm. Second, certification is seen as a form of labour market regulation, which is neither a compulsory process, nor a matter of pure self-regulation. Rather, it may be seen as a form of enforced self-regulation, or ‘co-regulation’ undertaken on a voluntary basis by the parties, relying on the competence and expertise of the members of the certification panel, who act impartially. Employers are under no obligation to refer their contracts to a certification panel, but if they do so and receive a positive ruling, the certification gives the contract a legal presumption of fairness, certifying its conformity with legal principles for the purpose of preventing disputes at a later stage

    Operando Raman spectroscopy tracks oxidation-state changes in an amorphous Co oxide material for electrocatalysis of the oxygen evolution reaction

    Get PDF
    Transition metal oxides are of high interest in both energy storage (batteries) and production of non-fossil fuels by (photo)electrocatalysis. Their functionally crucial charge (oxidation state) changes and electrocatalytic properties are best investigated under electrochemical operation conditions. We established operando Raman spectroscopy for investigation of the atomic structure and oxidation state of a non-crystalline, hydrated, and phosphate-containing Co oxide material (CoCat), which is an electrocatalyst for the oxygen evolution reaction (OER) at neutral pH and is structurally similar to LiCoO2 of batteries. Raman spectra were collected at various sub-catalytic and catalytic electric potentials. 2H labeling suggests Co oxidation coupled to Co—OH deprotonation at catalytic potentials. 18O labeling supports O—O bond formation starting from terminally coordinated oxygen species. Two broad bands around 877 cm−1 and 1077 cm−1 are assigned to CoCat-internal H2PO4-. Raman peaks corresponding to terminal oxide (Co=O) or reactive oxygen species were not detectable; 1000–1200 cm−1 bands were instead assigned to two-phonon Raman scattering. At an increasingly positive potential, the intensity of the Raman bands decreased, which is unexpected and explained by self-absorption relating to CoCat electrochromism. A red-shift of the Co—O Raman bands with increasing potentials was described by four Gaussian bands of potential-dependent amplitudes. By linear combination of Raman band amplitudes, we can follow individually the Co(2+/3+) and Co(3+/4+) redox transitions, whereas previously published x-ray absorption spectroscopy analysis could determine only the averaged Co oxidation state. Our results show how electrochemical operando Raman spectroscopy can be employed as a potent analytical tool in mechanistic investigations on OER catalysis

    Update on the recent development of allosteric modulators for adenosine receptors and their therapeutic applications

    Get PDF
    Adenosine receptors (ARs) have been identified as promising therapeutic targets for countless pathological conditions, spanning from inflammatory diseases to central nervous system disorders, from cancer to metabolic diseases, from cardiovascular pathologies to respiratory diseases, and beyond. This extraordinary therapeutic potential is mainly due to the plurality of pathophysiological actions of adenosine and the ubiquitous expression of its receptors. This is, however, a double-edged sword that makes the clinical development of effective ligands with tolerable side effects difficult. Evidence of this is the low number of AR agonists or antagonists that have reached the market. An alternative approach is to target allosteric sites via allosteric modulators, compounds endowed with several advantages over orthosteric ligands. In addition to the typical advantages of allosteric modulators, those acting on ARs could benefit from the fact that adenosine levels are elevated in pathological tissues, thus potentially having negligible effects on normal tissues where adenosine levels are maintained low. Several A(1) and various A(3)AR allosteric modulators have been identified so far, and some of them have been validated in different preclinical settings, achieving promising results. Less fruitful, instead, has been the discovery of A(2A) and A(2B)AR allosteric modulators, although the results obtained up to now are encouraging. Collectively, data in the literature suggests that allosteric modulators of ARs could represent valuable pharmacological tools, potentially able to overcome the limitations of orthosteric ligands

    Mouse Panx1 Is Dispensable for Hearing Acquisition and Auditory Function

    Get PDF
    Panx1 forms plasma membrane channels in brain and several other organs, including the inner ear. Biophysical properties, activation mechanisms and modulators of Panx1 channels have been characterized in detail, however the impact of Panx1 on auditory function is unclear due to conflicts in published results. To address this issue, hearing performance and cochlear function of the Panx1−/− mouse strain, the first with a reported global ablation of Panx1, were scrutinized. Male and female homozygous (Panx1−/−), hemizygous (Panx1+/−) and their wild type (WT) siblings (Panx1+/+) were used for this study. Successful ablation of Panx1 was confirmed by RT-PCR and Western immunoblotting in the cochlea and brain of Panx1−/− mice. Furthermore, a previously validated Panx1-selective antibody revealed strong immunoreactivity in WT but not in Panx1−/− cochleae. Hearing sensitivity, outer hair cell-based “cochlear amplifier” and cochlear nerve function, analyzed by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recordings, were normal in Panx1+/− and Panx1−/− mice. In addition, we determined that global deletion of Panx1 impacts neither on connexin expression, nor on gap-junction coupling in the developing organ of Corti. Finally, spontaneous intercellular Ca2+ signal (ICS) activity in organotypic cochlear cultures, which is key to postnatal development of the organ of Corti and essential for hearing acquisition, was not affected by Panx1 ablation. Therefore, our results provide strong evidence that, in mice, Panx1 is dispensable for hearing acquisition and auditory function

    Effects in short and long term of global postural reeducation (GPR) on chronic low back pain: A controlled study with one-year follow-up

    Get PDF
    Objective. Comparing global postural reeducation (GPR) to a standard physiotherapy treatment (PT) based on active exercises, stretching, and massaging for improving pain and function in chronic low back pain (CLBP) patients. Design. Prospective controlled study. Setting. Outpatient rehabilitation facility. Participants. Adult patients with diagnosis of nonspecific, chronic (>6 months) low back pain. Interventions. Both treatments consisted of 15 sessions of one hour each, twice a week including patient education. Measures. Roland Morris Disability Questionnaire to evaluate disability, and Numeric Analog Scale for pain. A score change >30% was considered clinically significant. Past treatments, use of medications, smoking habits, height, weight, profession, and physical activity were also recorded on baseline, on discharge, and 1 year after discharge (resp., T0, T1, and T2). Results. At T0 103 patients with cLBP (51 cases and 52 controls) were recruited. The treatment (T1) has been completed by 79 (T1) of which 60 then carried out the 1-year follow-up (T2). Both GPR and PT at T1 were associated with a significant statistical and clinical improvement in pain and function, compared to T0. At T2, only pain in GPR still registered a statistically significant improvement

    Water oxidation catalysis – role of redox and structural dynamics in biological photosynthesis and inorganic manganese oxides

    Get PDF
    Water oxidation is pivotal in biological photosynthesis, where it is catalyzed by a protein-bound metal complex with a Mn4Ca-oxide core; related synthetic catalysts may become key components in non-fossil fuel technologies. Going beyond characterization of the catalyst resting state, we compare redox and structural dynamics of three representative birnessite-type Mn(Ca) oxides (catalytically active versus inactive; with/without calcium) and the biological catalyst. In the synthetic oxides, Mn oxidation was induced by increasingly positive electrode potentials and monitored by electrochemical freeze-quench and novel time-resolved in situ experiments involving detection of X-ray absorption and UV-vis transients, complemented by electrochemical impedance spectroscopy. A minority fraction of Mn(III) ions present at catalytic potentials is found to be functionally crucial; calcium ions are inessential but tune redox properties. Redox-state changes of the water- oxidizing Mn oxide are similarly fast as observed in the biological catalyst (<10 ms), but 10–100 times slower in the catalytically inactive oxide. Surprisingly similar redox dynamics of biological catalyst and water-oxidizing Mn(Ca) oxides suggest that in both catalysts, rather than direct oxidation of bound water species, oxidation equivalents are accumulated before onset of the multi-electron O–O bond formation chemistry in Mn(III)–Mn(IV) oxidation steps coupled to changes in the oxo-bridging between metal ions. Aside from the ability of the bulk oxide to undergo Mn oxidation-state changes, we identify two further, likely interrelated prerequisites for catalytic activity of the synthetic oxides: (i) the presence of Mn(III) ions at catalytic potentials preventing formation of an inert all-Mn(IV) oxide and (ii) fast rates of redox-state changes approaching the millisecond time domain

    Estimation of Spatiotemporal Gait Parameters in Walking on a Photoelectric System: Validation on Healthy Children by Standard Gait Analysis

    Full text link
    The use of stereophotogrammetry systems is challenging when targeting children's gait analysis due to the time required and the need to keep physical markers in place. For this reason, marker-less photoelectric systems appear to be a solution for accurate and fast gait analysis in youth. The aim of this study is to validate a photoelectric system and its configurations (LED filter setting) on healthy children, comparing the kinematic gait parameters with those obtained from a three-dimensional stereophotogrammetry system. Twenty-seven healthy children were enrolled. Three LED filter settings for the OptoGait were compared to the BTS P6000. The analysis included the non-parametric 80% limits of agreement and the intraclass correlation coefficient (ICC). Additionally, normalised limits of agreement and bias (NLoAs and Nbias) were compared to the clinical experience of physical therapists (i.e., assuming an error lower than 5% is acceptable). ICCs showed excellent consistency for most of the parameters and filter settings; NLoAs varied between 1.39% and 12.62%. An inverse association between the number of LEDs for filter setting and the bias values was also observed. Observations confirm the validity of the OptoGait system for the evaluation of spatiotemporal gait parameters in children

    Nickel-iron catalysts for electrochemical water oxidation – redox synergism investigated by in situ X-ray spectroscopy with millisecond time resolution

    Get PDF
    In future technological systems for chemical storage of renewable energy and production of non-fossil fuels, NiFe oxyhydroxides are prime candidates for efficient alkaline water oxidation (oxygen evolution reaction, OER). The synergistic effect of Ni and Fe is well documented but still insufficiently understood. Fluorescence-detected X-ray absorption spectroscopy at the K-edges of Ni and Fe provided structural information on the non-catalytic (reduced) and catalytic (oxidized) state of the NiFe catalyst. Time-resolved detection of X-ray signals during (i) cyclic voltammetry and (ii) in response to potential steps revealed that the Ni(2+)/Ni(3+) redox transition is directly coupled to modification of the Fe ligand environment. We propose that the lattice-geometry modification of the Ni(Fe) oxyhydroxide that results from Ni oxidation enforces changes in the ligand environment of the Fe ions. The Fe sites do not undergo a distinctive redox transition, but are “enslaved” by the oxidation state changes of the Ni ions
    • 

    corecore