47 research outputs found

    Spectrum of magnetic hyperfine fields at ^111 C probe nuclei in the pseudobinary rare-earth Laves-phase compounds R_(1-x)Y_xCo₂

    Get PDF
    The spectrum of the magnetic hyperfine fields at the closed-shell probe nucleus ^111 Cd on the rare earth (R) site of the pseudobinary Laves-phase compounds R_81-x)Y_xCo₂ has been investigated by perturbed angular correlation (PAC) spectroscopy at 10 K for the rare earth R=Tb and Ho at various Y concentrations x ≤ 0.8 and for R=Gd, Dy, Er at the concentration x=0.3. Up to four components with different magnetic interaction frequencies ν^(i) _(M) could be resolved from the PAC spectra. The relative intensities of these components are in fair agreement with those of a binomial distribution of Y atoms on the four nearest neighbor (NN) R sites of the probe nucleus. For all R constituents, one finds a strictly linear relation between the number n_(R) of NN R atoms and the magnetic hyperfine frequencies: ν^(i) _(M) =ν_(M)(4Y)+∆ ν(M) Xn_(R).The frequency ν_(M)(4Y)=35(2) MHz is independent of the R constituent and of the Y concentration up to x ≤ 0.6. These properties identify ν_(M)(4Y) as the contribution of the Co 3d moments to the hyperfine interaction at the ^111 Cdsite. The frequency steps ∆ ν_(M)[≤ 0.1 ν_(M)(4Y)] reflect the spin polarization directly induced by the 4f spins at the probe nucleus. From Gd to Er, the spin polarization decreases much stronger than expected from the linear variation of the 4f spin in the heavy R series. An indirect 4f contribution caused by a dependence of the Co 3d moment on the number of R neighbors can be excluded. The relation ν_(M)^(i) = ν_(M)(4Y) + ∆ν_(M) X n_(R) then implies that the contributions of the 3d and 4f spins to the magnetic hyperfine field in RCo₂ have the same relative sign

    Thermal evolution of CaO-doped HfO2 films and powders

    Get PDF
    Solid solutions of ZrO2 and HfO2 are potential electrolyte materials for intermediate-temperature SOFC because both are oxygen-ion conductors. The main challenge for these compounds is to reduce the relatively high value of the activation energies vacancies diffusion, which is influenced by several factors. In this work the thermal evolution of CaO-HfO2 materials have been investigated. (CaO)y-Hf(1-y)O(2-y) (y 0.06, 0.14 y 0.2) coatings and powders were synthesized by chemical solution deposition (CSD). Films were deposited onto alumina substrates by Dip Coating technique, the burning of organic waste was carried out at 500 °C under normal atmosphere and then the films were thermally treated at intervals of temperature rising to a maximum temperature of 1250 °C. By means Glazing Incidence X-ray Diffraction (ρ-2θ configuration) the phases were studied in the annealed films. On the other hand, the thermal evolution and crystallization process of powders were analyzed in-situ by HT-XRD. The phenomena crystallization occurred in films and powders were analyzed. The activation energies of diffusion of oxygen vacancies of HfO2-14 mole% CaO and HfO2-20 mole% CaO films were measured from the thermal evolution of the relaxation constant measured by Perturbed Angular Correlation Technique.Facultad de Ciencias ExactasFacultad de Ciencias Agrarias y Forestale

    Thermal evolution of CaO-doped HfO2 films and powders

    Get PDF
    Solid solutions of ZrO2 and HfO2 are potential electrolyte materials for intermediate-temperature SOFC because both are oxygen-ion conductors. The main challenge for these compounds is to reduce the relatively high value of the activation energies vacancies diffusion, which is influenced by several factors. In this work the thermal evolution of CaO-HfO2 materials have been investigated. (CaO)y-Hf(1-y)O(2-y) (y 0.06, 0.14 y 0.2) coatings and powders were synthesized by chemical solution deposition (CSD). Films were deposited onto alumina substrates by Dip Coating technique, the burning of organic waste was carried out at 500 °C under normal atmosphere and then the films were thermally treated at intervals of temperature rising to a maximum temperature of 1250 °C. By means Glazing Incidence X-ray Diffraction (ρ-2θ configuration) the phases were studied in the annealed films. On the other hand, the thermal evolution and crystallization process of powders were analyzed in-situ by HT-XRD. The phenomena crystallization occurred in films and powders were analyzed. The activation energies of diffusion of oxygen vacancies of HfO2-14 mole% CaO and HfO2-20 mole% CaO films were measured from the thermal evolution of the relaxation constant measured by Perturbed Angular Correlation Technique.Facultad de Ciencias ExactasFacultad de Ciencias Agrarias y Forestale

    An Oral Vaccine Based on U-Omp19 Induces Protection against B. abortus Mucosal Challenge by Inducing an Adaptive IL-17 Immune Response in Mice

    Get PDF
    As Brucella infections occur mainly through mucosal surfaces, the development of mucosal administered vaccines could be radical for the control of brucellosis. In this work we evaluated the potential of Brucella abortus 19 kDa outer membrane protein (U-Omp19) as an edible subunit vaccine against brucellosis. We investigated the protective immune response elicited against oral B. abortus infection after vaccination of mice with leaves from transgenic plants expressing U-Omp19; or with plant-made or E. coli-made purified U-Omp19. All tested U-Omp19 formulations induced protection against Brucella when orally administered without the need of adjuvants. U-Omp19 also induced protection against a systemic challenge when parenterally administered. This built-in adjuvant ability of U-Omp19 was independent of TLR4 and could be explained at least in part by its capability to activate dendritic cells in vivo. While unadjuvanted U-Omp19 intraperitoneally administered induced a specific Th1 response, following U-Omp19 oral delivery a mixed specific Th1-Th17 response was induced. Depletion of CD4+ T cells in mice orally vaccinated with U-Omp19 resulted in a loss of the elicited protection, indicating that this cell type mediates immune protection. The role of IL-17 against Brucella infection has never been explored. In this study, we determined that if IL-17A was neutralized in vivo during the challenge period, the mucosal U-Omp19 vaccine did not confer mucosal protection. On the contrary, IL-17A neutralization during the infection did not influence at all the subsistence and growth of this bacterium in PBS-immunized mice. All together, our results indicate that an oral unadjuvanted vaccine based on U-Omp19 induces protection against a mucosal challenge with Brucella abortus by inducing an adaptive IL-17 immune response. They also indicate different and important new aspects i) IL-17 does not contribute to reduce the bacterial burden in non vaccinated mice and ii) IL-17 plays a central role in vaccine mediated anti-Brucella mucosal immunity

    Pasantías de investigación para alumnos que cursan el último año de la escuela secundaria

    Get PDF
    El objetivo principal es estimular en los alumnos el concepto de posibilidad de realizar una carrera biomédica, basado simple y necesariamente en la voluntad y el esfuerzo, proponiendo el acercamiento a una unidad académica y a un grupo de docentes-investigadores en un plano personalizado, con un lenguaje accesible y en una condición de contención que permita que el alumno confronte su propia realidad con un proyecto universitario al alcance de su entorno económico social.Facultad de Ciencias Médica

    Characterization of Periplasmic Protein BP26 Epitopes of Brucella melitensis Reacting with Murine Monoclonal and Sheep Antibodies

    Get PDF
    More than 35,000 new cases of human brucellosis were reported in 2010 by the Chinese Center for Disease Control and Prevention. An attenuated B. melitensis vaccine M5-90 is currently used for vaccination of sheep and goats in China. In the study, a periplasmic protein BP26 from M5-90 was characterized for its epitope reactivity with mouse monoclonal and sheep antibodies. A total of 29 monoclonal antibodies (mAbs) against recombinant BP26 (rBP26) were produced, which were tested for reactivity with a panel of BP26 peptides, three truncated rBP26 and native BP26 containing membrane protein extracts (NMP) of B. melitensis M5-90 in ELISA and Western-Blot. The linear, semi-conformational and conformational epitopes from native BP26 were identified. Two linear epitopes recognized by mAbs were revealed by 28 of 16mer overlapping peptides, which were accurately mapped as the core motif of amino acid residues 93DRDLQTGGI101 (position 93 to 101) or residues 104QPIYVYPD111, respectively. The reactivity of linear epitope peptides, rBP26 and NMP was tested with 137 sheep sera by ELISAs, of which the two linear epitopes had 65–70% reactivity and NMP 90% consistent with the results of a combination of two standard serological tests. The results were helpful for evaluating the reactivity of BP26 antigen in M5-90

    Depletion of Dendritic Cells Enhances Innate Anti-Bacterial Host Defense through Modulation of Phagocyte Homeostasis

    Get PDF
    Dendritic cells (DCs) as professional antigen-presenting cells play an important role in the initiation and modulation of the adaptive immune response. However, their role in the innate immune response against bacterial infections is not completely defined. Here we have analyzed the role of DCs and their impact on the innate anti-bacterial host defense in an experimental infection model of Yersinia enterocolitica (Ye). We used CD11c-diphtheria toxin (DT) mice to deplete DCs prior to severe infection with Ye. DC depletion significantly increased animal survival after Ye infection. The bacterial load in the spleen of DC-depleted mice was significantly lower than that of control mice throughout the infection. DC depletion was accompanied by an increase in the serum levels of CXCL1, G-CSF, IL-1α, and CCL2 and an increase in the numbers of splenic phagocytes. Functionally, splenocytes from DC-depleted mice exhibited an increased bacterial killing capacity compared to splenocytes from control mice. Cellular studies further showed that this was due to an increased production of reactive oxygen species (ROS) by neutrophils. Adoptive transfer of neutrophils from DC-depleted mice into control mice prior to Ye infection reduced the bacterial load to the level of Ye-infected DC-depleted mice, suggesting that the increased number of phagocytes with additional ROS production account for the decreased bacterial load. Furthermore, after incubation with serum from DC-depleted mice splenocytes from control mice increased their bacterial killing capacity, most likely due to enhanced ROS production by neutrophils, indicating that serum factors from DC-depleted mice account for this effect. In summary, we could show that DC depletion triggers phagocyte accumulation in the spleen and enhances their anti-bacterial killing capacity upon bacterial infection

    PAC research in Biology

    No full text
    Abstract: In this paper possible applications of Perturbed Angular Correlations (PAC) technique in Biology are considered. Previous PAC experiments in biology are globally analyzed. All the work that appears in the literature has been organized in a few lines of research, just to make the analysis and discussion easy. The commonly used radioactive probes are listed and the experimental difficulties are analyzed. We also report applications of 181 Hf and 111 In isotopes in lifesciences other than their use in PAC. The possibility of extending these studies using the PAC technique is discussed
    corecore