119 research outputs found
Recommended from our members
Time-resolved nonlinear ghost imaging: route to hyperspectral single-pixel reconstruction of complex samples at THz frequencies
Terahertz (THz) is an innovative form of electromagnetic radiation providing unique spectroscopy capabilities in critical fields, ranging from biology to material science and security. The limited availability of high-resolution imaging devices, however, constitutes a major limitation in this field. In this work, we tackle this challenge by proposing an innovative type of time-space nonlinear Ghost-Imaging (GI) methodology that conceptually outperforms established single-pixel imaging protocols. Our methodology combines nonlinear pattern generation with time-resolved single-pixel measurements, as enabled by the state-of-the-art Time-Domain Spectroscopy (TDS) technique. This approach is potentially applicable to any wave-domain in which the field is a measurable quantity. The full knowledge of the temporal evolution of the transmitted field enables devising a new form of full-wave reconstruction process. This gives access not only to the morphological features of the sample with deeply subwavelength resolution but also to its local spectrum (hyperspectral imaging). As a target application, we consider hyperspectral THz imaging of a disordered inhomogeneous sample
Recommended from our members
Time-resolved nonlinear ghost imaging
Terahertz (THz) spectroscopy systems are widely employed to retrieve the chemical and material composition of a sample. This is single-handed the most important driving motivation in the field and has largely contributed to shaping THz science as an independent subject. The limited availability of high-resolution imaging devices, however, still represents a major technological challenge in this promising field of research. In this theoretical work, we tackle this challenge by developing a novel nonlinear Ghost Imaging (GI) approach that conceptually outperforms established single-pixel imaging protocols at inaccessible wavelengths. Our methodology combines nonlinear THz generation with time-resolved field measurements, as enabled by state-of-the-art Time Domain Spectroscopy (TDS) techniques. As an ideal application target, we consider hyperspectral THz imaging of semi-transparent samples with nonnegligible delay contribution and we demonstrate how time-resolved, full-wave acquisition enables accurate spatiotemporal reconstruction of complex inhomogeneous samples
Signal processing by opto-optical interactions between self-localized and free propagating beams in liquid crystals
The reorientational nonlinearity of nematic liquid crystals enables a
self-localized spatial soliton and its waveguide to be deflected or destroyed
by a control beam propagating across the cell. We demonstrate a simple
all-optical readdressing scheme by exploiting the lens-like perturbation
induced by an external beam on both a nematicon and a co-polarized guided
signal of different wavelength. Angular steering as large as 2.2 degrees was
obtained for control powers as low as 32mW in the near infrared
FLEA: Fresnel-limited extraction algorithm applied to spectral phase interferometry for direct field reconstruction (SPIDER)
We present a novel extraction algorithm for spectral phase interferometry for
direct field reconstruction (SPIDER) for the so-called X-SPIDER configuration.
Our approach largely extends the measurable time windows of pulses without
requiring any modification to the experimental X-SPIDER set-up.Comment: 24 pages 26 references 8 figure
Characterization of high-speed balanced photodetectors
We report the characterization of a balanced ultrafast photodetector. For this purpose, we use a recently developed time-domain laser-based vector network analyzer (VNA) to determine the common-mode rejection ratio (CMRR) of the device under test. This includes the frequency-domain response above the single-mode frequency of the coaxial connector. Although the balanced photodetector has a nominal bandwidth of 43 GHz, it generates voltage pulses with frequency components up to 180 GHz. We obtain a CMRR of better than 30 dB up to 70 GHz and better than 20 dB up to 110 GHz. The laser-based measurements are compared with the measurements using a digital sampling oscilloscope and with the frequency-domain measurements using a conventional VNA. We obtain good agreement between the three techniques with the laser-based method providing the largest measurement bandwidth, although it also constitutes the most complicated characterization setup
CMOS compatible integrated all-optical radio frequency spectrum analyzer
We report an integrated all-optical radio frequency spectrum analyzer based on a ~4cm long doped silica glass waveguide, with a bandwidth greater than 2.5 THz. We use this device to characterize the intensity power spectrum of ultrahighrepetition rate mode-locked lasers at repetition rates up to 400 GHz, and observe dynamic noise related behavior not observable with other technique
- âŠ