4,560 research outputs found

    The Excess Far-Infrared Emission of AGN in the Local Universe

    Full text link
    We have cross-correlated the Sloan Digital Sky Survey (SDSS) second data release spectroscopic galaxy sample with the IRAS faint-source catalogue (FSC). Optical emission line ratios are used to classify the galaxies with reliable IRAS 60 and 100 microns detections into AGN and normal star-forming galaxies. We then create subsamples of normal galaxies and AGN that are very closely matched in terms of key physical properties such as stellar mass, redshift, size, concentration and mean stellar age (as measured by absorption line indicators in the SDSS spectra). We then quantify whether there are systematic differences between the IR luminosities of the galaxies and the AGN in the matched subsamples. We find that the AGN exhibit a significant excess in far-IR emission relative to the star-forming galaxies in our sample. The excesses at 60 and 100 microns are 0.21 +/- 0.03 dex and 0.12 +/- 0.035 dex in log[L(60)/M*] and log[L(100)/M*], respectively. We then discuss whether the far-IR excess is produced by radiation from the active nucleus that is absorbed by dust or alternatively, by an extra population of young stars that is not detectable at optical wavelengths.Comment: 12 pages, 14 figures, accepted by MNRA

    Thermal conductivity of lipidic emulsions and its use for production and quality control

    Get PDF
    Thermal conductivity of lipidic emulsions has been experimentally determined by the probe method. To this purpose a special probe has been designed and built in laboratory, with small diameter (0.6 mm) and a high length to diameter ratio (100). The temperature sensor of the probe (type T thermocouple) and the heater (Pt wire) were properly calibrated. Moreover, the probe performance has been tested by means of a pure liquid (glycerin) having well known thermal conductivity by literature. Differences of about 1.5% at ambient temperature in thermal conductivity values between literature and experiments were found. On lipidic emulsions first thermal conductivity has been measured in the temperature range 1040°C, second the same property as a function of time at constant temperature (40°C), then the values after freezing at –15°C and reheating at 20 °C; and last the kinetics of degeneration. Results show a significant difference between thermal conductivity values of a new emulsion (0.51 W/m K), compared with the creamed one (0.62 W/m K), and the decayed one (0.68 W/m K ). It has also put into evidence why the frozen emulsion cannot be used for intravenous injection, i.e. viscosity increases because of breaking of the oil particles. Finally information about the kinetics of the degeneration process have been obtained. The uncertainty resulting from the calibration and tests justifies the possible use of the measurement technique for process control of production, and also for quality control in the clinical practice

    Mono- and Biexponential Luminescence Decays of Individual Single-Walled Carbon Nanotubes

    Get PDF
    We have studied the exciton recombination dynamics of individual (6,4) and (6,5) single-walled carbon nanotubes embedded in aqueous gels or deposited on glass surfaces. CoMoCat nanotubes systematically display short monoexponential photoluminescence (PL) decays presumably due to defects introduced during their synthesis. In contrast HiPco nanotubes can either display mono- or biexponential PL decays depending on the environmental conditions. Transition from bi- to monoexponential decays can be reproduced by a simple three level model taking into account defect-dependent nonradiative decay mechanisms

    Fluctuation-induced interactions between dielectrics in general geometries

    Full text link
    We study thermal Casimir and quantum non-retarded Lifshitz interactions between dielectrics in general geometries. We map the calculation of the classical partition function onto a determinant which we discretize and evaluate with the help of Cholesky factorization. The quantum partition function is treated by path integral quantization of a set of interacting dipoles and reduces to a product of determinants. We compare the approximations of pairwise additivity and proximity force with our numerical methods. We propose a ``factorization approximation'' which gives rather good numerical results in the geometries that we study

    The Fermi-Pasta-Ulam problem and its underlying integrable dynamics: an approach through Lyapunov Exponents

    Get PDF
    FPU models, in dimension one, are perturbations either of the linear model or of the Toda model; perturbations of the linear model include the usual β\beta-model, perturbations of Toda include the usual α+β\alpha+\beta model. In this paper we explore and compare two families, or hierarchies, of FPU models, closer and closer to either the linear or the Toda model, by computing numerically, for each model, the maximal Lyapunov exponent χ\chi. We study the asymptotics of χ\chi for large NN (the number of particles) and small ϵ\epsilon (the specific energy E/NE/N), and find, for all models, asymptotic power laws χCϵa\chi\simeq C\epsilon^a, CC and aa depending on the model. The asymptotics turns out to be, in general, rather slow, and producing accurate results requires a great computational effort. We also revisit and extend the analytic computation of χ\chi introduced by Casetti, Livi and Pettini, originally formulated for the β\beta-model. With great evidence the theory extends successfully to all models of the linear hierarchy, but not to models close to Toda

    The excess far-infrared emission of active galactic nuclei in the local Universe

    Get PDF
    We have cross-correlated the Sloan Digital Sky Survey (SDSS) second data release spectroscopic galaxy sample with the IRAS Faint Source Catalogue (FSC). Optical emission line ratios are used to classify the galaxies with reliable IRAS 60- and 100-μm detections into active galactic nuclei (AGN) and normal star-forming galaxies. We then create subsamples of normal galaxies and AGN that are very closely matched in terms of key physical properties such as stellar mass, redshift, size, concentration and mean stellar age (as measured by absorption line indicators in the SDSS spectra). We then quantify whether there are systematic differences between the infrared (IR) luminosities of the galaxies and the AGN in the matched subsamples. We find that the AGN exhibit a significant excess in far-infrared (FIR) emission relative to the star-forming galaxies in our sample. The excesses at 60 and 100 μm are 0.21 ± 0.03 and 0.12 ± 0.035 dex in log L60/M★ and log L100/M★, respectively. We then discuss whether the FIR excess is produced by radiation from the active nucleus that is absorbed by dust or, alternatively, by an extra population of young stars that is not detectable at optical wavelength

    SPIDER X - Environmental effects in central and satellite early-type galaxies through the stellar fossil record

    Full text link
    A detailed analysis of how environment affects the star formation history of early-type galaxies (ETGs) is undertaken via high signal to noise ratio stacked spectra obtained from a sample of 20,977 ETGs (morphologically selected) from the SDSS-based SPIDER survey. Two major parameters are considered for the study: the central velocity dispersion (sigma), which relates to local drivers of star formation, and the mass of the host halo, which relates to environment-related effects. In addition, we separate the sample between centrals (the most massive galaxy in a halo) and satellites. We derive trends of age, metallicity, and [alpha/Fe] enhancement, with sigma. We confirm that the major driver of stellar population properties in ETGs is velocity dispersion, with a second-order effect associated to the central/satellite nature of the galaxy. No environmental dependence is detected for satellite ETGs, except at low sigma - where satellites in groups or in the outskirts of clusters tend to be younger than those in the central regions of clusters. In contrast, the trends for centrals show a significant dependence on halo mass. Central ETGs in groups (i.e. with a halo mass >10^12.5 M_Sun) have younger ages, lower [alpha/Fe], and higher internal reddening, than "isolated" systems (i.e. centrals residing in low-mass, <10^12.5 M_Sun, halos). Our findings imply that central ETGs in groups formed their stellar component over longer time scales than "isolated" centrals, mainly because of gas-rich interactions with their companion galaxies.Comment: 22 pages, 19 figures, accepted for publication in MNRA

    Numerical methods for fluctuation driven interactions between dielectrics

    Full text link
    We develop a discretized theory of thermal Casimir interactions to numerically calculate the interactions between fluctuating dielectrics. From a constrained partition function we derive a surface free energy, while handling divergences that depend on system size and discretization. We derive analytic results for parallel plate geometry in order to check the convergence of the numerical methods. We use the method to calculate vertical and lateral Casimir forces for a set of grooves.Comment: revtex, 20 page
    corecore