31 research outputs found

    Galaxy merging in MOND

    Full text link
    We present the results of N-body simulations of dissipationless galaxy merging in Modified Newtonian Dynamics (MOND). For comparison, we also studied Newtonian merging between galaxies embedded in dark matter halos, with internal dynamics equivalent to the MOND systems. We found that the merging timescales are significantly longer in MOND than in Newtonian gravity with dark matter, suggesting that observational evidence of rapid merging could be difficult to explain in MOND. However, when two galaxies eventually merge, the MOND merging end-product is hardly distinguishable from the final stellar distribution of an equivalent Newtonian merger with dark matter.Comment: 5 pages, 2 color figures. To appear in MNRAS Letters. Added references and discussion, conclusions unchange

    Vertical dynamics of disk galaxies in MOND

    Full text link
    We investigate the possibility of discriminating between Modified Newtonian Dynamics (MOND) and Newtonian gravity with dark matter, by studying the vertical dynamics of disk galaxies. We consider models with the same circular velocity in the equatorial plane (purely baryonic disks in MOND and the same disks in Newtonian gravity embedded in spherical dark matter haloes), and we construct their intrinsic and projected kinematical fields by solving the Jeans equations under the assumption of a two-integral distribution function. We found that the vertical velocity dispersion of deep-MOND disks can be much larger than in the equivalent spherical Newtonian models. However, in the more realistic case of high-surface density disks this effect is significantly reduced, casting doubts on the possibility of discriminating between MOND and Newtonian gravity with dark matter by using current observations.Comment: 8 pages, 7 figures. Accepted for publication in MNRAS. Added referenc

    Three-dimensional evolution of magnetic and velocity shear driven instabilities in a compressible magnetized jet

    Full text link
    The problem of three-dimensional combined magnetic and velocity shear driven instabilities of a compressible magnetized jet modeled with a plane neutral/current double vortex sheet in the framework of the resistive magnetohydrodynamics is addressed. The resulting dynamics given by the stream+current sheet interaction is analyzed and the effects of a variable geometry of the basic fields are considered. Depending on the basic asymptotic magnetic field configuration, a selection rule of the linear instability modes can be obtained. Hence, the system follows a two-stage path developing either through a fully three-dimensional dynamics with a rapid evolution of kink modes leading to a final turbulent state, or rather through a driving two-dimensional instability pattern that develops on parallel planes on which a reconnection+coalescence process takes place.Comment: 33 pages, 15 figures, accepted for publication in Physics of Plasma

    Radial orbital anisotropy and the Fundamental Plane of elliptical galaxies

    Get PDF
    The existence of the Fundamental Plane (FP) imposes strong constraints on the structure and dynamics of elliptical galaxies, and thus contains important information on the processes of their formation and evolution. Here we focus on the relations between the FP thinness and tilt and the amount of radial orbital anisotropy. By using N-body simulations of galaxy models characterized by observationally motivated density profiles, and also allowing for the presence of live, massive dark matter halos, we explore the impact of radial orbital anisotropy and instability on the FP properties. The numerical results confirm a previous semi--analytical finding: the requirement of stability matches almost exactly the thinness of the FP. In other words, galaxy models that are radially anisotropic enough to be found outside the observed FP (with their isotropic parent models lying on the FP) are unstable, and their end--products fall back on the FP itself. We also find that a systematic increase of radial orbit anisotropy with galaxy luminosity cannot explain by itself the whole tilt of the FP, becoming the galaxy models unstable at moderately high luminosities: at variance with the previous case their end--products are found well outside the FP itself (abridged).Comment: 30 pages, 6 figures, MNRAS (accepted

    Characterisation of beam driven ionisation injection in the blowout regime of Plasma Acceleration

    Full text link
    Beam driven ionisation injection is characterised for a variety of high-Z dopant. We discuss the region of extraction and why the position where electrons are captured influences the final quality of the internally-injected bunch. The beam driven ionisation injection relies on the capability to produce a high gradient fields at the bubble closure, with magnitudes high enough to ionise by tunnelling effect the still bounded electrons (of a high-Z dopant). The ionised electrons are captured by the nonlinear plasma wave at the accelerating and focusing wake phase leading to high-brightness trailing bunches. The high transformer ratio guarantees that the ionisation only occurs at the bubble closure. The quality of the ionisation-injected trailing bunches strongly and non-linearly depends on the properties of the dopant gas (density and initial ionisation state). We use the full 3D PIC code ALaDyn{\tt ALaDyn} to consider the highly three-dimensional nature of the effect. By means of a systematic approach we have investigated the emittance and energy spread formation and the evolution for different dopant gases and configurations

    Simulation of the laser-plasma acceleration for the PLASMONX project with the PIC code ALaDyn

    Get PDF
    In this paper we will briefly introduce laser–plasma acceleration for electrons and present some numerical simulations. The simulations have been performed to find a suitable working point for one of the test experiments of the INFN–CNR PLASMONX project. FLAME (Frascati laser for acceleration and multidisciplinary experiments), a 300 TW Ti:Sa laser, is being installed and commissioned at Laboratori Nazionali di Frascati (LFN). The first pilot experiment SITE (self-injection test experiment) is planned for this year (2010). The simulations have been run using a fully self-consistent particle-in-cell code AlaDyn (Acceleration by LAser and DYNamics of charged particles) developed and maintained at the Department of Physics at the University of Bologna within the PLAMSONX project

    Rise time of proton cut-off energy in 2D and 3D PIC simulations

    Full text link
    The Target Normal Sheath Acceleration (TNSA) regime for proton acceleration by laser pulses is experimentally consolidated and fairly well understood. However, uncertainties remain in the analysis of particle-in-cell (PIC) simulation results. The energy spectrum is exponential with a cut-off, but the maximum energy depends on the simulation time, following different laws in two and three dimensional (2D, 3D) PIC simulations, so that the determination of an asymptotic value has some arbitrariness. We propose two empirical laws for rise time of the cut-off energy in 2D and 3D PIC simulations, suggested by a model in which the proton acceleration is due to a surface charge distribution on the target rear side. The kinetic energy of the protons that we obtain follows two distinct laws, which appear to be nicely satisfied by PIC simulations. The laws depend on two parameters: the scaling time, at which the energy starts to rise, and the asymptotic cut-off energy. The values of the cut-off energy, obtained by fitting the 2D and 3D simulations for the same target and laser pulse, are comparable. This suggests that parametric scans can be performed with 2D simulations, since 3D ones are computationally very expensive. In this paper, the simulations are carried out for a0=3a_0=3 with the PIC code ALaDyn by changing the target thickness LL and the incidence angle α\alpha. A monotonic dependence, on LL for normal incidence and on α\alpha for fixed LL, is found, as in the experimental results for high temporal contrast pulses
    corecore