51 research outputs found
Oxidative Stress Induces Protein Phosphatase 2A-dependent Dephosphorylation of the Pocket Proteins pRb, p107, and p130
Oxidative stress induces cell death and growth arrest. In this study, the regulation and the functional role of the retinoblastoma family proteins pRb, p107, and p130 in the cellular response to oxidative stress were investigated. Treatment of endothelial cells with H2O2 induced rapid hypophosphorylation of the retinoblastoma family proteins. This event did not require p53 or p21Waf1/Cip1/Sdi1 and was not associated with cyclin/cyclin-dependent kinase down-modulation. Four lines of evidence indicate that H2O2-induced hypophosphorylation of pRb, p107, and p130 was because of the activity of protein phosphatase 2A (PP2A). First, cell treatment with two phosphatase inhibitors, okadaic acid and calyculin A, prevented the hypophosphorylation of the retinoblastoma family proteins, at concentrations that specifically inhibit PP2A. Second, SV40 small t, which binds and inhibits PP2A, when overexpressed prevented H2O2-induced dephosphorylation of the retinoblastoma family proteins, whereas a SV40 small t mutant unable to bind PP2A was totally inert. Third, PP2A core enzyme physically interacted with pRb and p107, both in H2O2-treated and untreated cells. Fourth, a PP2A phosphatase activity was co-immunoprecipitated with pRb, and the activity of pRb-associated PP2A was positively modulated by cell treatment with H2O2. Because DNA damaging agents inhibit DNA synthesis in a pRb-dependent manner, it was determined whether the PP2A-mediated dephosphorylation of the retinoblastoma family proteins played a role in this S-phase response. Indeed, it was found that inhibition of PP2A by SV40 small t over-expression prevented DNA synthesis inhibition induced by H2O2
Microrna-221 and Microrna-222 Modulate Differentiation and Maturation of Skeletal Muscle Cells
BACKGROUND:MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression. They negatively regulate gene expression post-transcriptionally by translational repression and target mRNA degradation. miRNAs have been shown to play crucial roles in muscle development and in regulation of muscle cell proliferation and differentiation. METHODOLOGY/PRINCIPAL FINDINGS:By comparing miRNA expression profiling of proliferating myoblasts versus differentiated myotubes, a number of modulated miRNAs, not previously implicated in regulation of myogenic differentiation, were identified. Among these, miR-221 and miR-222 were strongly down-regulated upon differentiation of both primary and established myogenic cells. Conversely, miR-221 and miR-222 expression was restored in post-mitotic, terminally differentiated myotubes subjected to Src tyrosine kinase activation. By the use of specific inhibitors we provide evidence that expression of miR-221 and miR-222 is under the control of the Ras-MAPK pathway. Both in myoblasts and in myotubes, levels of the cell cycle inhibitor p27 inversely correlated with miR-221 and miR-222 expression, and indeed we show that p27 mRNA is a direct target of these miRNAs in myogenic cells. Ectopic expression of miR-221 and miR-222 in myoblasts undergoing differentiation induced a delay in withdrawal from the cell cycle and in myogenin expression, followed by inhibition of sarcomeric protein accumulation. When miR-221 and miR-222 were expressed in myotubes undergoing maturation, a profound alteration of myofibrillar organization was observed. CONCLUSIONS/SIGNIFICANCE:miR-221 and miR-222 have been found to be modulated during myogenesis and to play a role both in the progression from myoblasts to myocytes and in the achievement of the fully differentiated phenotype. Identification of miRNAs modulating muscle gene expression is crucial for the understanding of the circuits controlling skeletal muscle differentiation and maintenance
Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs
In order to understand the role of microRNAs (miRNAs) in vascular physiopathology, we took advantage of deep-sequencing techniques to accurately and comprehensively profile the entire miRNA population expressed by endothelial cells exposed to hypoxia. SOLiD sequencing of small RNAs derived from human umbilical vein endothelial cells (HUVECs) exposed to 1% O or normoxia for 24 h yielded more than 22 million reads per library. A customized bioinformatic pipeline identified more than 400 annotated microRNA/ microRNA*species with a broad abundance range: miR-21 and miR-126 totaled almost 40% of all miRNAs. A complex repertoire of isomiRs was found, displaying also 5′ variations, potentially affecting target recognition. Highstringency bioinformatic analysis identified microRNA candidates, whose predicted pre-miRNAs folded into a stable hairpin. Validation of a subset by qPCR identified 18 high-confidence novel miRNAs as detectable in independent HUVEC cultures and associated to the RISC complex. The expression of two novel miRNAs was significantly down-modulated by hypoxia, while miR- 210 was significantly induced. Gene ontology analysis of their predicted targets revealed a significant association to hypoxiainducible factor signaling, cardiovascular diseases, and cancer. Overexpression of the novel miRNAs in hypoxic endothelial cells affected cell growth and confirmed the biological relevance of their down-modulation. In conclusion, deep-sequencing accurately profiled known, variant, and novel microRNAs expressed by endothelial cells in normoxia and hypoxia
Deregulated MicroRNAs in Myotonic Dystrophy Type 2
Myotonic Dystrophy Type-2 (DM2) is an autosomal dominant disease caused by the expansion of a CCTG tetraplet repeat. It is a multisystemic disorder, affecting skeletal muscles, the heart, the eye, the central nervous system and the endocrine system. Since microRNA (miRNA) expression is disrupted in Myotonic Dystrophy Type-1 and many other myopathies, miRNAs deregulation was studied in skeletal muscle biopsies of 13 DM2 patients and 13 controls. Eleven miRNAs were deregulated: 9 displayed higher levels compared to controls (miR-34a-5p, miR-34b-3p, miR-34c-5p, miR-146b-5p, miR-208a, miR-221-3p and miR-381), while 4 were decreased (miR-125b-5p, miR-193a-3p, miR-193b-3p and miR-378a-3p). To explore the relevance of DM2 miRNA deregulation, the predicted interactions between miRNA and mRNA were investigated. Global gene expression was analyzed in DM2 and controls and bioinformatic analysis identified more than 1,000 miRNA/mRNA interactions. Pathway and function analysis highlighted the involvement of the miRNA-deregulated mRNAs in multiple aspects of DM2 pathophysiology. In conclusion, the observed miRNA dysregulations may contribute to DM2 pathogenetic mechanisms
Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension
OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo
Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab
The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension
ROD1 is a seedless target gene of hypoxia-induced miR-210.
Most metazoan microRNA (miRNA) target sites have perfect pairing to the "seed" sequence, a highly conserved region centering on miRNA nucleotides 2-7. Thus, complementarity to this region is a necessary requirement for target prediction algorithms. However, also non-canonical miRNA binding can confer target regulation. Here, we identified a seedless target of miR-210, a master miRNA of the hypoxic response. We analyzed 20 genes that were inversely correlated to miR-210 expression and did not display any complementarity with miR-210 seed sequence. We validated ROD1 (Regulator of Differentiation 1, also named PTBP3, Polypyrimidine Tract Binding protein 3) as a miR-210 seedless transcript enriched in miR-210-containing RNA-induced silencing complexes. ROD1 was not indirectly targeted by a miR-210-induced miRNA. Conversely, we identified a "centered" miR-210 binding site in ROD1 involving 10 consecutive bases in the central portion of miR-210. Reporter assays showed that miR-210 inhibited ROD1 by the direct binding to this sequence, demonstrating that ROD1 is a bona fide seedless target of miR-210. As expected, both ROD1 mRNA and protein were down-modulated upon hypoxia in a miR-210 dependent manner. ROD1 targeting by miR-210 was biologically significant: the rescue of ROD1 inhibition significantly increased hypoxia-induced cell death. These data highlight the importance of ROD1 regulation by miR-210 for cell homeostasis
- …