8,300 research outputs found

    A systematic analysis of X-ray afterglows of gamma-ray burst observed by XMM-Newton

    Get PDF
    This work is part of a systematic re-analysis program of all the data of Gamma-Ray Burst (GRB) X-ray afterglows observed so far, in order to constrain the GRB models. We present here a systematic analysis of those afterglows observed by XMM-Newton between January 2000 and March 2004. This dataset includes GRB 011211 and GRB 030329. We have obtained spectra, light curves and colors for these afterglows. In this paper we focus on the continuum spectral and temporal behavior. We compare these values with the theoretical ones expected from the fireball model. We derive constraints about the burst environment (absorption, density profile) and put constraints on their beaming angle.Comment: 7 pages, 2 figures, COSPAR proceeding accepted for publication in Advances in Space Researc

    Nonlinear Relaxation in Population Dynamics

    Full text link
    We analyze the nonlinear relaxation of a complex ecosystem composed of many interacting species. The ecological system is described by generalized Lotka-Volterra equations with a multiplicative noise. The transient dynamics is studied in the framework of the mean field theory and with random interaction between the species. We focus on the statistical properties of the asymptotic behaviour of the time integral of the i-th population and on the distribution of the population and of the local field.Comment: 11 pages, 4 figures, in press in Int. Journal of Fractals (2001

    Regulation of the Neuron-specific Ras GTPase-activating Protein, synGAP, by Ca2+/Calmodulin-dependent Protein Kinase II

    Get PDF
    synGAP is a neuron-specific Ras GTPase-activating protein found in high concentration in the postsynaptic density fraction from mammalian forebrain. Proteins in the postsynaptic density, including synGAP, are part of a signaling complex attached to the cytoplasmic tail of the N-methyl-D-aspartate-type glutamate receptor. synGAP can be phosphorylated by a second prominent component of the complex, Ca2+/calmodulin-dependent protein kinase II. Here we show that phosphorylation of synGAP by Ca2+/calmodulin-dependent protein kinase II increases its Ras GTPase-activating activity by 70-95%. We identify four major sites of phosphorylation, serines 1123, 1058, 750/751/756, and 764/765. These sites together with other minor phosphorylation sites in the carboxyl tail of synGAP control stimulation of GTPase-activating activity. When three of these sites and four other serines in the carboxyl tail are mutated, stimulation of GAP activity after phosphorylation is reduced to 21 ± 5% compared with 70-95% for the wild type protein. We used phosphosite-specific antibodies to show that, as predicted, phosphorylation of serines 765 and 1123 is increased in cultured cortical neurons after exposure of the neurons to the agonist N-methyl-D-aspartate

    SynGAP Regulates Steady-State and Activity-Dependent Phosphorylation of Cofilin

    Get PDF
    SynGAP, a prominent Ras/Rap GTPase-activating protein in the postsynaptic density, regulates the timing of spine formation and trafficking of glutamate receptors in cultured neurons. However, the molecular mechanisms by which it does this are unknown. Here, we show that synGAP is a key regulator of spine morphology in adult mice. Heterozygous deletion of synGAP was sufficient to cause an excess of mushroom spines in adult brains, indicating that synGAP is involved in steady-state regulation of actin in mature spines. Both Ras- and Rac-GTP levels were elevated in forebrains from adult synGAP+/- mice. Rac is a well known regulator of actin polymerization and spine morphology. The steady-state level of phosphorylation of cofilin was also elevated in synGAP+/- mice. Cofilin, an F-actin severing protein that is inactivated by phosphorylation, is a downstream target of a pathway regulated by Rac. We show that transient regulation of cofilin by treatment with NMDA is also disrupted in synGAP mutant neurons. Treatment of wild-type neurons with 25 µM NMDA triggered transient dephosphorylation and activation of cofilin within 15 s. In contrast, neurons cultured from mice with a homozygous or heterozygous deletion of synGAP lacked the transient regulation by the NMDA receptor. Depression of EPSPs induced by a similar treatment of hippocampal slices with NMDA was disrupted in slices from synGAP+/- mice. Our data show that synGAP mediates a rate-limiting step in steady-state regulation of spine morphology and in transient NMDA-receptor-dependent regulation of the spine cytoskeleton

    Potential tests of the Generalized Uncertainty Principle in the advanced LIGO experiment

    Full text link
    The generalized uncertainty principle and a minimum measurable length arise in various theories of gravity and predict Planck-scale modifications of the canonical position-momentum commutation relation. Postulating a similar modified commutator between the canonical variables of the electromagnetic field in quantum optics, we compute Planck-scale corrections to the radiation pressure noise and shot noise of Michelson-Morley interferometers, with particular attention to gravity wave detectors such as LIGO. We show that advanced LIGO is potentially sensitive enough to observe Planck-scale effects and thereby indirectly a minimal length. We also propose estimates for the bounds on quantum gravity parameters from current and future advanced LIGO experiments.Comment: 11 pages, 8 figure

    Images in cardiovascular medicine : multiphoton microscopy for three-dimensional imaging of lymphocyte recruitment into apolipoprotein-E-deficient mouse carotid artery

    Get PDF
    Two recent elegant studies have shown that in apolipoprotein-E– deficient mice, the lamina adventitia is a major site of arterial wall inflammation associated with lymphocyte infiltration into atherosclerotic arteries and with formation of adventitial lymphoid-like tissues.1,2 These results suggest that lymphocyte responses in the lamina adventitia may play a crucial role in atherosclerosis development.1,

    On the nature of X-Ray Flashes in the SWIFT era

    Get PDF
    X-Ray Flashes (XRFs) are soft gamma-ray bursts whose nature is not clear. Their soft spectrum can be due to cosmological effects (high redshift), an off-axis view of the jet or can be intrinsic to the source. We use SWIFT observations to investigate different scenarios proposed to explain their origin. We have made a systematic analysis of the afterglows of XRFs with known redshift observed by SWIFT. We derive their redshift and luminosity distributions, and compare their properties with a sample of normal GRBs observed by the same instrument. The high distance hypothesis is ruled out by the redshift distribution of our sample of XRFs, indicating that, at least for our sample, the off-axis and sub-energetic hypotheses are preferred. Of course, this does not exclude that some XRFs without known redshift could be at high distance. However we find that taking into account the sensitivity of the BAT instrument, XRFs cannot be detected by SWIFT beyond ~ 3. The luminosity distribution of XRF afterglows is similar to the GRB one. This would rule out most off-axis models, but for the homogeneous jet model. However this model predicts a GRB rate uncomfortably near the observed rate of supernovae. This implies that XRFs, at least those of our sample, are intrinsically soft.Comment: 4 pages, 2 color figures. Astronomy and Astrophysics Letters, accepte

    The ultra-long GRB 111209A - II. Prompt to afterglow and afterglow properties

    Full text link
    The "ultra-long" Gamma Ray Burst GRB 111209A at redshift z=0.677, is so far the longest GRB ever observed, with rest frame prompt emission duration of ~4 hours. In order to explain the bursts exceptional longevity, a low metallicity blue supergiant progenitor has been invoked. In this work, we further investigate this peculiar burst by performing a multi-band temporal and spectral analysis of both the prompt and the afterglow emission. We use proprietary and publicly available data from Swift, Konus Wind, XMM-Newton, TAROT as well as from other ground based optical and radio telescopes. We find some peculiar properties that are possibly connected to the exceptional nature of this burst, namely: i) an unprecedented large optical delay of 410+/-50 s is measured between the peak epochs of a marked flare observed also in gamma-rays after about 2 ks from the first Swift/BAT trigger; ii) if the optical and X-ray/gamma-ray photons during the prompt emission share a common origin, as suggested by their similar temporal behavior, a certain amount of dust in the circumburst environment should be introduced, with rest frame visual dust extinction of AV=0.3-1.5 mag; iii) at the end of the X-ray "steep decay phase" and before the start of the X-ray afterglow, we detect the presence of a hard spectral extra power law component never revealed so far. On the contrary, the optical afterglow since the end of the prompt emission shows more common properties, with a flux power law decay with index alpha=1.6+/-0.1 and a late re-brightening feature at 1.1 day. We discuss our findings in the context of several possible interpretations given so far to the complex multi-band GRB phenomenology. We also attempt to exploit our results to further constrain the progenitor nature properties of this exceptionally long GRB, suggesting a binary channel formation for the proposed blue supergiant progenitor.Comment: ApJ accepted. Revised version with substantial adjustments, the main results remain unchange
    • …
    corecore