3,127 research outputs found

    Bell inequality violation by entangled single photon states generated from a laser, a LED or a Halogen lamp

    Get PDF
    In single-particle or intraparticle entanglement, two degrees of freedom of a single particle, e.g., momentum and polarization of a single photon, are entangled. Single-particle entanglement (SPE) provides a source of non classical correlations which can be exploited both in quantum communication protocols and in experimental tests of noncontextuality based on the Kochen-Specker theorem. Furthermore, SPE is robust under decoherence phenomena. Here, we show that single-particle entangled states of single photons can be produced from attenuated sources of light, even classical ones. To experimentally certify the entanglement, we perform a Bell test, observing a violation of the Clauser, Horne, Shimony and Holt (CHSH) inequality. On the one hand, we show that this entanglement can be achieved even in a classical light beam, provided that first-order coherence is maintained between the degrees of freedom involved in the entanglement. On the other hand, we prove that filtered and attenuated light sources provide a flux of independent SPE photons that, from a statistical point of view, are indistinguishable from those generated by a single photon source. This has important consequences, since it demonstrates that cheap, compact, and low power entangled photon sources can be used for a range of quantum technology applications

    Efficient Coherent Control by Optimized Sequences of Pulses of Finite Duration

    Full text link
    Reliable long-time storage of arbitrary quantum states is a key element for quantum information processing. In order to dynamically decouple a spin or quantum bit from a dephasing environment, we introduce an optimized sequence of NN control pulses of finite durations \tau\pp and finite amplitudes. The properties of this sequence of length TT stem from a mathematically rigorous derivation. Corrections occur only in order TN+1T^{N+1} and \tau\pp^3 without mixed terms such as T^N\tau\pp or T^N\tau\pp^2. Based on existing experiments, a concrete setup for the verification of the properties of the advocated realistic sequence is proposed.Comment: 8 pages, 1 figur

    Effect of modified-release methylphenidate on cognition in children with ADHD: evidence from a temporal preparation task

    Get PDF
    ADHD is associated with various cognitive deficits, including general performance decrements and specific impairments, for instance in temporal processing. However, time preparation under uncertain conditions has been under-investigated in this population. We aimed at filling this gap. We administered a variable foreperiod paradigm to children with ADHD before and after a one-month treatment with modified-release methylphenidate. Age-matched ADHD children with no treatment and healthy children were also tested as control groups with the same time-schedule. Children with ADHD had general performance deficits (longer and more variable response times), which disappeared in the experimental group after pharmacological intervention. Moreover, ADHD children showed a marked dependency on sequential foreperiod effects (i.e., slower responses for longer preceding foreperiods), especially at short current foreperiods, which were not modulated by the pharmacological treatment. In conclusion, the present findings show that methylphenidate enhances general motor processes rather than more specific time preparation processes, some of which appear deviant in ADHD

    Scaling of excitations in dimerized and frustrated spin-1/2 chains

    Full text link
    We study the finite-size behavior of the low-lying excitations of spin-1/2 Heisenberg chains with dimerization and next-to-nearest neighbors interaction, J_2. The numerical analysis, performed using density-matrix renormalization group, confirms previous exact diagonalization results, and shows that, for different values of the dimerization parameter \delta, the elementary triplet and singlet excitations present a clear scaling behavior in a wide range of \ell=L/\xi (where L is the length of the chain and \xi is the correlation length). At J_2=J_2c, where no logarithmic corrections are present, we compare the numerical results with finite-size predictions for the sine-Gordon model obtained using Luscher's theory. For small \delta we find a very good agreement for \ell > 4 or 7 depending on the excitation considered.Comment: 4 pages, 4 eps figures, RevTeX 4 class, same version as in PR

    Hidden order in bosonic gases confined in one dimensional optical lattices

    Full text link
    We analyze the effective Hamiltonian arising from a suitable power series expansion of the overlap integrals of Wannier functions for confined bosonic atoms in a 1d optical lattice. For certain constraints between the coupling constants, we construct an explicit relation between such an effective bosonic Hamiltonian and the integrable spin-SS anisotropic Heisenberg model. Therefore the former results to be integrable by construction. The field theory is governed by an anisotropic non linear σ\sigma-model with singlet and triplet massive excitations; such a result holds also in the generic non-integrable cases. The criticality of the bosonic system is investigated. The schematic phase diagram is drawn. Our study is shedding light on the hidden symmetry of the Haldane type for one dimensional bosons.Comment: 5 pages; 1 eps figure. Revised version, to be published in New. J. Phy

    The effect of time-jitter in equispaced sampling wattmeters

    Get PDF
    This paper evaluates the effect of time-jitters in the equally spaced sampling wattmeters on the hypothesis of jitters uncorrelated with the input signals. The general case of two distinct time-jitters is considered, one common to the two channels and the other different for each one of them. The performance of the wattmeter has been evaluated by considering the asymptotic statistic parameters of the output. It has been shown that the different time-jitters introduce a bias and that both time-jitters contribute to the variance of the output. In any case, time-jitters introduce further bandwidth limitations which must be taken into account in the wattmeter accuracy evaluation. The theoretical results have been compared with simulated and experimental findings. Experimental results were obtained with a prototype in which both common and different time-jitters were separately added to the equally spaced sampling instants of the two input channels. In both cases, all the results were in good agreement with theoretical expectation

    Performance function for time-jittered equispaced sampling wattmeters

    Get PDF
    This paper evaluates the effect of time-jitter in the equally spaced sampling wattmeters on the hypothesis of equal effects in the two channels and a jitter uncorrelated with the input signals. It is shown that time-jitter, which is a random fluctuation with respect to the nominal sampling time, introduces a frequency limitation which is evaluated together with that due to the sampling strategy and filtering algorithm. The theoretical results are compared with the simulated one

    Temperature-induced shape morphing of bi-metallic structures

    Get PDF
    In this work, we study the thermo-mechanical behavior of metallic structures designed to significantly change shape in response to thermal stimuli. This behavior is achieved by arranging two metals with different coefficient of thermal expansion (CTE), Aluminum and Titanium, as to create displacement-amplifying units that can expand uniaxially. In particular, our design comprises a low-CTE bar surrounded by a high-CTE frame that features flexure hinges and thicker links. When the temperature increases, the longitudinal expansion of the high-CTE portion is geometrically constrained by the low-CTE bar, resulting in a large tangential displacement. Our design is guided by theoretical models and numerical simulations. We validate our approach by fabricating and characterizing individual units, one dimensional arrays and three-dimensional structures. Our work shows that structurally robust metallic structures can be designed for large shape changes. The results also demonstrate how harsh environmental conditions (e.g., the extreme temperature swings that are characteristic of extraterrestrial environments) can be leveraged to produce function in a fully passive way
    corecore