96 research outputs found

    Excitation–Contraction Coupling of the Mouse Embryonic Cardiomyocyte

    Get PDF
    In the mammalian embryo, the primitive tubular heart starts beating during the first trimester of gestation. These early heartbeats originate from calcium-induced contractions of the developing heart muscle cells. To explain the initiation of this activity, two ideas have been presented. One hypothesis supports the role of spontaneously activated voltage-gated calcium channels, whereas the other emphasizes the role of Ca2+ release from intracellular stores initiating spontaneous intracellular calcium oscillations. We show with experiments that both of these mechanisms coexist and operate in mouse cardiomyocytes during embryonic days 9–11. Further, we characterize how inositol-3-phosphate receptors regulate the frequency of the sarcoplasmic reticulum calcium oscillations and thus the heartbeats. This study provides a novel view of the regulation of embryonic cardiomyocyte activity, explaining the functional versatility of developing cardiomyocytes and the origin and regulation of the embryonic heartbeat

    Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cardiomyocyte is a prime example of inherently complex biological system with inter- and cross-connected feedback loops in signalling, forming the basic properties of intracellular homeostasis. Functional properties of cells and tissues have been studied e.g. with powerful tools of genetic engineering, combined with extensive experimentation. While this approach provides accurate information about the physiology at the endpoint, complementary methods, such as mathematical modelling, can provide more detailed information about the processes that have lead to the endpoint phenotype.</p> <p>Results</p> <p>In order to gain novel mechanistic information of the excitation-contraction coupling in normal myocytes and to analyze sophisticated genetically engineered heart models, we have built a mathematical model of a mouse ventricular myocyte. In addition to the fundamental components of membrane excitation, calcium signalling and contraction, our integrated model includes the calcium-calmodulin-dependent enzyme cascade and the regulation it imposes on the proteins involved in excitation-contraction coupling. With the model, we investigate the effects of three genetic modifications that interfere with calcium signalling: 1) ablation of phospholamban, 2) disruption of the regulation of L-type calcium channels by calcium-calmodulin-dependent kinase II (CaMK) and 3) overexpression of CaMK. We show that the key features of the experimental phenotypes involve physiological compensatory and autoregulatory mechanisms that bring the system to a state closer to the original wild-type phenotype in all transgenic models. A drastic phenotype was found when the genetic modification disrupts the regulatory signalling system itself, i.e. the CaMK overexpression model.</p> <p>Conclusion</p> <p>The novel features of the presented cardiomyocyte model enable accurate description of excitation-contraction coupling. The model is thus an applicable tool for further studies of both normal and defective cellular physiology. We propose that integrative modelling as in the present work is a valuable complement to experiments in understanding the causality within complex biological systems such as cardiac myocytes.</p

    Varied Responses to a High m.3243A>G Mutation Load and Respiratory Chain Dysfunction in Patient-Derived Cardiomyocytes

    Get PDF
    The m.3243A>G mutation in mitochondrial tRNA-Leu(UUR) is one of the most common pathogenic mitochondrial DNA mutations in humans. The clinical manifestations are highly heterogenous and the causes for the drastic clinical variability are unknown. Approximately one third of patients suffer from cardiac disease, which often increases mortality. Why only some patients develop cardiomyopathy is unknown. Here, we studied the molecular effects of a high m.3243A>G mutation load on cardiomyocyte functionality, using cells derived from induced pluripotent stem cells (iPSC-CM) of two different m.3243A>G patients, only one of them suffering from severe cardiomyopathy. While high mutation load impaired mitochondrial respiration in both patients’ iPSC-CMs, the downstream consequences varied. mtDNA mutant cells from a patient with no clinical heart disease showed increased glucose metabolism and retained cellular ATP levels, whereas cells from the cardiac disease patient showed reduced ATP levels. In this patient, the mutations also affected intracellular calcium signaling, while this was not true in the other patient’s cells. Our results reflect the clinical variability in mitochondrial disease patients and show that iPSC-CMs retain tissue specific features seen in patients

    Varied Responses to a High m.3243A>G Mutation Load and Respiratory Chain Dysfunction in Patient-Derived Cardiomyocytes

    Get PDF
    The m.3243A>G mutation in mitochondrial tRNA-Leu(UUR) is one of the most common pathogenic mitochondrial DNA mutations in humans. The clinical manifestations are highly heterogenous and the causes for the drastic clinical variability are unknown. Approximately one third of patients suffer from cardiac disease, which often increases mortality. Why only some patients develop cardiomyopathy is unknown. Here, we studied the molecular effects of a high m.3243A>G mutation load on cardiomyocyte functionality, using cells derived from induced pluripotent stem cells (iPSC-CM) of two different m.3243A>G patients, only one of them suffering from severe cardiomyopathy. While high mutation load impaired mitochondrial respiration in both patients’ iPSC-CMs, the downstream consequences varied. mtDNA mutant cells from a patient with no clinical heart disease showed increased glucose metabolism and retained cellular ATP levels, whereas cells from the cardiac disease patient showed reduced ATP levels. In this patient, the mutations also affected intracellular calcium signaling, while this was not true in the other patient’s cells. Our results reflect the clinical variability in mitochondrial disease patients and show that iPSC-CMs retain tissue specific features seen in patients

    Vascular Endothelial Growth Factor-B Induces a Distinct Electrophysiological Phenotype in Mouse Heart

    Get PDF
    Vascular endothelial growth factor B (VEGF-B) is a potentmediator of vascular, metabolic, growth, and stress responses in the heart, but the effects on cardiac muscle and cardiomyocyte function are not known. The purpose of this study was to assess the effects of VEGF-B on the energy metabolism, contractile, and electrophysiological properties of mouse cardiac muscle and cardiac muscle cells. In vivo and ex vivo analysis of cardiac-specific VEGF-B TG mice indicated that the contractile function of the TG hearts was normal. Neither the oxidative metabolism of isolated TG cardiomyocytes nor their energy substrate preference showed any difference to WT cardiomyocytes. Similarly, myocyte Ca2+ signaling showed only minor changes compared to WT myocytes. However, VEGF-B overexpression induced a distinct electrophysiological phenotype characterized by ECG changes such as an increase in QRSp time and decreases in S and R amplitudes. At the level of isolated TG cardiomyocytes, these changes were accompanied with decreased action potential upstroke velocity and increased duration (APD60-70). These changes were partly caused by downregulation of sodium current (INa) due to reduced expression of Nav1.5. Furthermore, TG myocytes had alterations in voltage-gated K + currents, namely decreased density of transient outward current (Ito) and total K + current (Ipeak). At the level of transcription, these were accompanied by downregulation of Kv channel-interacting protein 2 (Kcnip2), a knownmodulatory subunit for Kv4.2/3 channel. Cardiac VEGF-B overexpression induces a distinct electrophysiological phenotype including remodeling of cardiomyocyte ion currents, which in turn induce changes in action potential waveform and ECG.Peer reviewe

    WDR12, a Member of Nucleolar PeBoW-Complex, Is Up-Regulated in Failing Hearts and Causes Deterioration of Cardiac Function

    Get PDF
    Aims In a recent genome-wide association study, WD-repeat domain 12 (WDR12) was associated with early-onset myocardial infarction (MI). However, the function of WDR12 in the heart is unknown. Methods and Results We characterized cardiac expression of WDR12, used adenovirus-mediated WDR12 gene delivery to examine effects of WDR12 on left ventricular (LV) remodeling, and analyzed relationship between MI associated WDR12 allele and cardiac function in human subjects. LV WDR12 protein levels were increased in patients with dilated cardiomyopathy and rats post-infarction. In normal adult rat hearts, WDR12 gene delivery into the anterior wall of the LV decreased interventricular septum diastolic and systolic thickness and increased the diastolic and systolic diameters of the LV. Moreover, LV ejection fraction (9.1%, P Conclusions WDR12 triggers distinct deterioration of cardiac function in adult rat heart and the MI associated WDR12 variant is associated with diastolic dysfunction in human subjects.Peer reviewe

    Loss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration

    Get PDF
    Age-related macular degeneration (AMD) is a multi-factorial disease that is the leading cause of irreversible and severe vision loss in the developed countries. It has been suggested that the pathogenesis of dry AMD involves impaired protein degradation in retinal pigment epithelial cells (RPE). RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, DNA and lipids and evoke tissue deterioration during the aging process. The ubiquitin-proteasome pathway and the lysosomal/autophagosomal pathway are the two major proteolytic systems in eukaryotic cells. NRF-2 (nuclear factor-erythroid 2-related factor-2) and PGC-1 alpha (peroxisome proliferator-activated receptor gamma coactivator-1 alpha) are master transcription factors in the regulation of cellular detoxification. We investigated the role of NRF-2 and PGC-1 alpha in the regulation of RPE cell structure and function by using global double knockout (dKO) mice. The NRF-2/PGC-1 alpha dKO mice exhibited significant age-dependent RPE degeneration, accumulation of the oxidative stress marker, 4-HNE (4-hydroxynonenal), the endoplasmic reticulum stress markers GRP78 (glucose-regulated protein 78) and ATF4 (activating transcription factor 4), and damaged mitochondria. Moreover, levels of protein ubiquitination and autophagy markers p62/SQSTM1 (sequestosome 1), Beclin-1 and LC3B (microtubule associated protein 1 light chain 3 beta) were significantly increased together with the Iba-1 (ionized calcium binding adaptor molecule 1) mononuclear phagocyte marker and an enlargement of RPE size. These histopathological changes of RPE were accompanied by photoreceptor dysmorphology and vision loss as revealed by electroretinography. Consequently, these novel findings suggest that the NRF-2/PGC-1 alpha dKO mouse is a valuable model for investigating the role of proteasomal and autophagy clearance in the RPE and in the development of dry AMD.Peer reviewe

    Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study

    Get PDF
    Electrophysiological studies of the human heart face the fundamental challenge that experimental data can be acquired only from patients with underlying heart disease. Regarding human atria, there exist sizable gaps in the understanding of the functional role of cellular Ca2+ dynamics, which differ crucially from that of ventricular cells, in the modulation of excitation-contraction coupling. Accordingly, the objective of this study was to develop a mathematical model of the human atrial myocyte that, in addition to the sarcolemmal (SL) ion currents, accounts for the heterogeneity of intracellular Ca2+ dynamics emerging from a structurally detailed sarcoplasmic reticulum (SR). Based on the simulation results, our model convincingly reproduces the principal characteristics of Ca2+ dynamics: 1) the biphasic increment during the upstroke of the Ca2+ transient resulting from the delay between the peripheral and central SR Ca2+ release, and 2) the relative contribution of SL Ca2+ current and SR Ca2+ release to the Ca2+ transient. In line with experimental findings, the model also replicates the strong impact of intracellular Ca2+ dynamics on the shape of the action potential. The simulation results suggest that the peripheral SR Ca2+ release sites define the interface between Ca2+ and AP, whereas the central release sites are important for the fire-diffuse-fire propagation of Ca2+ diffusion. Furthermore, our analysis predicts that the modulation of the action potential duration due to increasing heart rate is largely mediated by changes in the intracellular Na+ concentration. Finally, the results indicate that the SR Ca2+ release is a strong modulator of AP duration and, consequently, myocyte refractoriness/excitability. We conclude that the developed model is robust and reproduces many fundamental aspects of the tight coupling between SL ion currents and intracellular Ca2+ signaling. Thus, the model provides a useful framework for future studies of excitation-contraction coupling in human atrial myocytes

    Cellular mechanisms of atrial mechanotransduction:interacting mechanisms in stretch-induced changes of rat atrial function and their modulation by intracellular acidosis

    No full text
    Abstract Stretch of the cardiac muscle activates several physiological processes leading to changes in the function of the muscle. These changes include increase of the contraction force accompanied by changes in the intracellular calcium concentration. This phenomenon is known as Frank-Starling relation of the heart. In addition to this, stretch also influences the membrane voltage of individual myocytes predisposing the cardiac muscle to arrhythmias. In atrial muscle stretch augments the secretion of the atrial natriuretic peptide (ANP). Although several cellular components are known to be sensitive to mechanical stimulus the precise mechanisms participating to these stretch-induced changes are not known in detail. Further it is not known if these changes are causally related or if they share a common causal factor. This research was aimed to study the stretch-induced changes in the rat atrium. The possible interactive mechanisms were studied by recording intracellular action potentials, changes in the intracellular calcium concentration, contraction force and ANP secretion during stretch. The plausible mechanosensitive cellular components were incorporated into a mathematical model that was used to further study the mechanisms. The role of intracellular acidosis as a possible modulator of the mechanotransduction was of special interest. In isolated rat left atrium moderate stretch produced by increasing the intra-atrial pressure increased the contraction force in a biphasic manner. The immediate increase of the force was caused by altered properties of the contractile element, but the following slow increase was accompanied by an increase of the Ca2+ transient. These changes were followed by lengthening of the late phase of action potentials and augmented secretion of the ANP. Intensive sustained stretch was also found to induce delayed afterdepolarizations (DADs). Gadolinium (Gd3+), blocker of stretch-activated ion channels reduced the stretch-dependent activation of the contraction and inhibited the stretch-induced DADs. The mathematical model simulated the experimental findings at best when stretch-activated channel (SA-channel) activation and increased troponin-C affinity were used to mimic the stretch. The modelling data suggested that the SA-channel current increases the sarcoplasmic reticulum calcium content in a time dependent manner leading to Ca2+ transient augmentation during systole. Bigger Ca2+ transients induce a depolarizing current during the late phase of the action potential (AP) repolarization via the Na+/Ca2+ exchanger causing the lengthening of the action potentials. A small reduction of the intracellular pH (0.18 units) with 20 mM propionate was found to modulate the stretch-induced changes in the rat atrium. Acidosis leads to an increase in the diastolic [Ca2+]i during stretch, inhibits the stretch-induced changes in action potentials and slows down the contraction development during stretch by inhibiting the fast component of the force increase. These changes in E-C-coupling (excitation-contraction-coupling) were accompanied by a simultaneous augmentation of the ANP secretion. Furthermore, it was shown that contraction force and diastolic [Ca2+]i of the stretched tissue are more sensitive to acidosis than in non-stretched tissue. In conclusion, the stretch-induced changes in rat atrial myocytes are mediated by at least two mechanisms; stretch-activated Ca2+ influx and change in the properties of the contractile element. The action potential changes can be largely explained by modulation of the membrane voltage by intracellular calcium via Na+/Ca2+-exchanger. The co-occurrence of the changes in the [Ca2+]i and ANP secretion suggests that the stretch-induced ANP secretion can be mediated by [Ca2+]i
    corecore