80 research outputs found

    Simultaneous detection of both GDNF and GFRα1 expression patterns in the mouse central nervous system

    Get PDF
    Glial cell line-derived neurotrophic factor (GDNF) is proposed as a therapeutic tool in Parkinson’s disease, addiction-related disorders, and neurodegenerative conditions affecting motor neurons (MNs). Despite the high amount of work about GDNF therapeutic application, the neuronal circuits requiring GDNF trophic support in the brain and spinal cord (SC) are poorly characterized. Here, we defined GDNF and GDNF family receptor-α 1 (GFRα1) expression pattern in the brain and SC of newborn and adult mice. We performed systematic and simultaneous detection of EGFP and LacZ expressing alleles in reporter mice and asked whether modifications of this signaling pathway lead to a significant central nervous system (CNS) alteration. GFRα1 was predominantly expressed by neurons but also by an unexpected population of non-neuronal cells. GFRα1 expression pattern was wider in neonatal than in adult CNS and GDNF expression was restricted in comparison with GFRα1 at both developmental time points. The use of confocal microscopy to imaging X-gal deposits and EGFP allowed us to identify regions containing cells that expressed both proteins and to discriminate between auto and non-autotrophic signaling. We also suggested long-range GDNF-GFRα1 circuits taking advantage of the ability of the EGFP genetically encoded reporter to label long distance projecting axons. The complete elimination of either the ligand or the receptor during development did not produce major abnormalities, suggesting a preponderant role for GDNF signaling during adulthood. In the SC, our results pointed to local modulatory interneurons as the main target of GDNF produced by Clarke’s column (CC) cells. Our work increases the understanding on how GDNF signals in the CNS and establish a crucial framework for posterior studies addressing either the biological role of GDNF or the optimization of trophic factor-based therapies.Peer Reviewe

    GDNF-based therapies, GDNF-producing interneurons, and trophic support of the dopaminergic nigrostriatal pathway. Implications for Parkinson’s disease

    Get PDF
    EDITED BY : Javier Blesa, Jose L. Lanciego and Jose A. Obeso.The glial cell line-derived neurotrophic factor (GDNF) is a well-established trophic agent for dopaminergic (DA) neurons in vitro and in vivo. GDNF is necessary for maintenance of neuronal morphological and neurochemical phenotype and protects DA neurons from toxic damage. Numerous studies on animal models of Parkinson’s disease (PD) have reported beneficial effects of GDNF on nigrostriatal DA neuron survival. However, translation of these observations to the clinical setting has been hampered so far by side effects associated with the chronic continuous intra-striatal infusion of recombinant GDNF. In addition, double blind and placebo-controlled clinical trials have not reported any clinically relevant effect of GDNF on PD patients. In the past few years, experiments with conditional Gdnf knockout mice have suggested that GDNF is necessary for maintenance of DA neurons in adulthood. In parallel, new methodologies for exogenous GDNF delivery have been developed. Recently, it has been shown that a small population of scattered, electrically interconnected, parvalbumin positive (PV+) GABAergic interneurons is responsible for most of the GDNF produced in the rodent striatum. In addition, cholinergic striatal interneurons appear to be also involved in the modulation of striatal GDNF. In this review, we summarize current knowledge on brain GDNF delivery, homeostasis, and its effects on nigrostriatal DA neurons. Special attention is paid to the therapeutic potential of endogenous GDNF stimulation in PD.Xavier d’Anglemont de Tassigny was supported by the Miguel Servet program (grant CP12-03217) from the Health Institute Carlos III. Research by Alberto Pascual and Jose López-Barneo was supported by the Botín Foundation, the Spanish Ministry of Science and Innovation (SAF program) and the Andalusian Government.Peer reviewe

    GDNF-based therapies, GDNF-producing interneurons, and trophic support of the dopaminergic nigrostriatal pathway. Implications for Parkinson's disease

    Get PDF
    The glial cell line-derived neurotrophic factor (GDNF) is a well-established trophic agent for dopaminergic (DA) neurons in vitro and in vivo. GDNF is necessary for maintenance of neuronal morphological and neurochemical phenotype and protects DA neurons from toxic damage. Numerous studies on animal models of Parkinson’s disease (PD) have reported beneficial effects of GDNF on nigrostriatal DA neuron survival. However, translation of these observations to the clinical setting has been hampered so far by side effects associated with the chronic continuous intra-striatal infusion of recombinant GDNF. In addition, double blind and placebo-controlled clinical trials have not reported any clinically relevant effect of GDNF on PD patients. In the past few years, experiments with conditional Gdnf knockout mice have suggested that GDNF is necessary for maintenance of DA neurons in adulthood. In parallel, new methodologies for exogenous GDNF delivery have been developed. Recently, it has been shown that a small population of scattered, electrically interconnected, parvalbumin positive (PV+) GABAergic interneurons is responsible for most of the GDNF produced in the rodent striatum. In addition, cholinergic striatal interneurons appear to be also involved in the modulation of striatal GDNF. In this review, we summarize current knowledge on brain GDNF delivery, homeostasis, and its effects on nigrostriatal DA neurons. Special attention is paid to the therapeutic potential of endogenous GDNF stimulation in PD.Xavier d’Anglemont de Tassigny was supported by the Miguel Servet program (grant CP12-03217) from the Health Institute Carlos III. Research by Alberto Pascual and Jose López-Barneo was supported by the Botín Foundation, the Spanish Ministry of Science and Innovation (SAF program) and the Andalusian Government.Peer Reviewe

    Topological Progression in Proliferating Epithelia Is Driven by a Unique Variation in Polygon Distribution

    Get PDF
    Morphogenesis is consequence of lots of small coordinated variations that occur during development. In proliferating stages, tissue growth is coupled to changes in shape and organization. A number of studies have analyzed the topological properties of proliferating epithelia using the Drosophila wing disc as a model. These works are based in the existence of a fixed distribution of these epithelial cells according to their number of sides. Cell division, cell rearrangements or a combination of both mechanisms have been proposed to be responsible for this polygonal assembling. Here, we have used different system biology methods to compare images from two close proliferative stages that present high morphological similarity. This approach enables us to search for traces of epithelial organization. First, we show that geometrical and network characteristics of individual cells are mainly dependent on their number of sides. Second, we find a significant divergence between the distribution of polygons in epithelia from mid-third instar larva versus early prepupa. We show that this alteration propagates into changes in epithelial organization. Remarkably, only the variation in polygon distribution driven by morphogenesis leads to progression in epithelial organization. In addition, we identify the relevant features that characterize these rearrangements. Our results reveal signs of epithelial homogenization during the growing phase, before the planar cell polarity pathway leads to the hexagonal packing of the epithelium during pupal stages.LME is supported by the Miguel Servet (Instituto Carlos III) program that also funded the work. LME and DSG are funded by the Spanish Ministry of Science (BFU2011-25734). AS is funded by the Consejería de Innovación, Ciencia y Empresa of the Junta de Andalucía.Peer Reviewe

    Age-Mediated Transcriptomic Changes in Adult Mouse Substantia Nigra

    Get PDF
    Substantia nigra pars compacta (SNpc) is highly sensitive to normal aging and selectively degenerates in Parkinson's disease (PD). Until now, molecular mechanisms behind SNpc aging have not been fully investigated using high throughput techniques. Here, we show early signs of aging in SNpc, which are more evident than in ventral tegmental area (VTA), a region adjacent to SNpc but less affected in PD. Aging-associated early changes in transcriptome were investigated comparing late middle-aged (18 months old) to young (2 months old) mice in both SNpc and VTA. A meta-analysis of published microarray studies allowed us to generate a common >transcriptional signature> of the aged (≥ 24 months old) mouse brain. SNpc of late-middle aged mice shared characteristics with the transcriptional signature, suggesting an accelerated aging in SNpc. Age-dependent changes in gene expression specific to SNpc were also observed, which were related to neuronal functions and inflammation. Future studies could greatly help determine the contribution of these changes to SNpc aging. These data help understand the processes underlying SNpc aging and their potential contribution to age-related disorders like PD. © 2013 Gao et al.This work was funded by Spanish Ministry of Science and Education, Andalusian Government, and “Marcelino Botín” Foundation. “CIBERNED” (Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas) was funded by the Spanish “Carlos III” Institute of Health. LME was supported by the Spanish “Carlos III” Institute of Health. Support from the Spanish Ministry of Science and Education for MHF (“FPI” predoctoral fellowship) is also acknowledged.Peer Reviewe

    GDNF gene is associated with tourette syndrome in a family study

    Get PDF
    Huertas-Fernández, Ismael et al.[Background] Tourette syndrome is a disorder characterized by persistent motor and vocal tics, and frequently accompanied by the comorbidities attention deficit hyperactivity disorder and obsessive-compulsive disorder. Impaired synaptic neurotransmission has been implicated in its pathogenesis. Our aim was to investigate the association of 28 candidate genes, including genes related to synaptic neurotransmission and neurotrophic factors, with Tourette syndrome.[Methods] We genotyped 506 polymorphisms in a discovery cohort from the United States composed of 112 families and 47 unrelated singletons with Tourette syndrome (201 cases and 253 controls). Genes containing significant polymorphisms were imputed to fine-map the signal(s) to potential causal variants. Allelic analyses in Tourette syndrome cases were performed to check the role in attention deficit hyperactivity disorder and obsessive-compulsive disorder comorbidities. Target polymorphisms were further studied in a replication cohort from southern Spain composed of 37 families and three unrelated singletons (44 cases and 73 controls).[Results] The polymorphism rs3096140 in glial cell line–derived neurotrophic factor gene (GDNF) was significant in the discovery cohort after correction (P = 1.5 × 10−4). No linkage disequilibrium was found between rs3096140 and other functional variants in the gene. We selected rs3096140 as target polymorphism, and the association was confirmed in the replication cohort (P = 0.01). No association with any comorbidity was found.[Conclusions] As a conclusion, a common genetic variant in GDNF is associated with Tourette syndrome. A defect in the production of GDNF could compromise the survival of parvalbumin interneurons, thus altering the excitatory/inhibitory balance in the corticostriatal circuitry. Validation of this variant in other family cohorts is necessary. © 2015 International Parkinson and Movement Disorder SocietyThis study was supported by New Jersey Center for Tourette Syndrome and Associated Disorders (NJCTS), the National Institute of Mental Health (R01MH092293), the Instituto de Salud Carlos III (PI10/01674, PI13/01461, PI14/01823), the Consejería de Economía, Innovación, Ciencia y Empresa de la Junta de Andalucía (CVI-02526, CTS-7685), the Consejería de Salud y Bienestar Social de la Junta de Andalucía (PI-0741/2010, PI-0437-2012, PI-0471-2013), the Sociedad Andaluza de Neurología, the Fundación Alicia Koplowitz, the Fundación Mutua Madrileña and the Jaques and Gloria Gossweiler Foundation. Ismael Huertas Fernández was supported by the “PFIS” program, Pilar Gómez Garre was supported by the “Miguel Servet” program, and Juan Francisco Martín Rodríguez was supported by the “Sara Borrell” program, all 3 from the Instituto de Salud Carlos III.Peer Reviewe

    Evaluation of the Kinetics of Antibody Response to COVID-19 Vaccine in Solid Organ Transplant Recipients: The Prospective Multicenter ORCHESTRA Cohort

    Get PDF
    Previous studies assessing the antibody response (AbR) to mRNA COVID-19 vaccines in solid organ transplant (SOT) recipients are limited by short follow-up, hampering the analysis of AbR kinetics. We present the ORCHESTRA SOT recipients cohort assessed for AbR at first dose (t0), second dose (t1), and within 3 ± 1 month (t2) after the first dose. We analyzed 1062 SOT patients (kidney, 63.7%; liver, 17.4%; heart, 16.7%; and lung, 2.5%) and 5045 health care workers (HCWs). The AbR rates in the SOTs and HCWs were 52.3% and 99.4%. The antibody levels were significantly higher in the HCWs than in the SOTs (p < 0.001). The kinetics showed an increase (p < 0.001) in antibody levels up to 76 days and a non-significant decrease after 118 days in the SOT recipients versus a decrease up to 76 days (p = 0.02) and a less pronounced decrease between 76 and 118 days (p = 0.04) in the HCWs. Upon multivariable analysis, liver transplant, ≥3 years from SOT, mRNA-1273, azathioprine, and longer time from t0 were associated with a positive AbR at t2. Older age, other comorbidities, mycophenolate, steroids, and impaired graft function were associated with lower AbR probability. Our results may be useful to optimize strategies of immune monitoring after COVID-19 vaccination and indications regarding timing for booster dosages calibrated on SOT patients’ characteristics.The ORCHESTRA project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 101016167Peer reviewe

    Borrelia burgdorferi infection induces long-term memory-like responses in macrophages with tissue-wide consequences in the heart

    Get PDF
    Lyme carditis is an extracutaneous manifestation of Lyme disease characterized by episodes of atrioventricular block of varying degrees and additional, less reported cardiomyopathies. The molecular changes associated with the response to Borrelia burgdorferi over the course of infection are poorly understood. Here, we identify broad transcriptomic and proteomic changes in the heart during infection that reveal a profound down-regulation of mitochondrial components. We also describe the long-term functional modulation of macrophages exposed to live bacteria, characterized by an augmented glycolytic output, increased spirochetal binding and internalization, and reduced inflammatory responses. In vitro, glycolysis inhibition reduces the production of tumor necrosis factor (TNF) by memory macrophages, whereas in vivo, it produces the reversion of the memory phenotype, the recovery of tissue mitochondrial components, and decreased inflammation and spirochetal burdens. These results show that B. burgdorferi induces long-term, memory-like responses in macrophages with tissue-wide consequences that are amenable to be manipulated in vivo.Supported by grants from the Spanish Ministry of Science, Innovation and Universities (MCIU) co-financed with FEDER funds (SAF2015-65327-R and RTI2018-096494-B-100 to JA; BFU2016-76872-R to EB, AGL2017-86757-R to LA, SAF2017-87301-R to MLMC, SAF2015-64111-R to AP, SAF2015-73549-JIN to HR), Instituto de Salud Carlos III (PIE13/0004 to AP), the Basque Government Department of Health (2015111117 to LA), the Basque Foundation for Innovation and Health Research (BIOEF), through the EiTB Maratoia grant BIO15/CA/016/BS to MLMC, the regional Government of Andalusia co-funded by CEC and FEDER funds (Proyectos de Excelencia P12-CTS-2232) and Fundación Domingo Martínez (to AP). LA is supported by the Ramon y Cajal program (RYC-2013-13666). DB, MMR and TMM are recipients of MCIU FPI fellowships. ACG and AP are recipients of fellowships form the Basque Government. APC is a recipient of a fellowship from the University of the Basque Country. We thank the MCIU for the Severo Ochoa Excellence accreditation (SEV-2016-0644), the Basque Department of Industry, Tourism and Trade (Etortek and Elkartek programs), the Innovation Technology Department of the Bizkaia Province and the CIBERehd network. DB and JA are supported by a grant from the Jesús de Gangoiti Barrera Foundation

    Systemic and Local Hypoxia Synergize Through HIF1 to Compromise the Mitochondrial Metabolism of Alzheimer's Disease Microglia

    Get PDF
    Microglial cells are key contributors to Alzheimer’s disease (AD), constituting the first cellular line against Aß plaques. Local hypoxia and hypoperfusion, which are typically present in peripheral inflammatory foci, are also common in the AD brain. We describe here that Aß deposits are hypoxic and hypoperfused and that Aß plaque-associated microglia (AßAM) are characterized by the expression of hypoxia-inducible factor 1 (HIF1)-regulated genes. Notably, AßAM simultaneously upregulate the expression of genes involved in anaerobic glycolysis and oxidative mitochondrial metabolism, show elongated mitochondria surrounded by rough endoplasmic reticulum, and blunt the HIF1-mediated exclusion of pyruvate from the mitochondria through the pyruvate dehydrogenase kinase 1 (PDK1). Overstabilization of HIF1 –by genetic (von Hippel-Lindau deficient microglia) or systemic hypoxia (an AD risk factor)– induces PDK1 in microglia and reduces microglial clustering in AD mouse models. The human AD brain exhibits increased HIF1 activity and a hypoxic brain area shows reduced microglial clustering. The loss of the microglial barrier associates with augmented Aß neuropathology both in the chronic hypoxia AD mouse model and the human AD brain. Thus, the synergy between local and systemic AD risk factors converges with genetic susceptibility to cause microglial dysfunction.Peer reviewe
    corecore