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The glial cell line-derived neurotrophic factor (GDNF) is a well-established trophic agent
for dopaminergic (DA) neurons in vitro and in vivo. GDNF is necessary for maintenance of
neuronal morphological and neurochemical phenotype and protects DA neurons from toxic
damage. Numerous studies on animal models of Parkinson’s disease (PD) have reported
beneficial effects of GDNF on nigrostriatal DA neuron survival. However, translation of
these observations to the clinical setting has been hampered so far by side effects
associated with the chronic continuous intra-striatal infusion of recombinant GDNF. In
addition, double blind and placebo-controlled clinical trials have not reported any clinically
relevant effect of GDNF on PD patients. In the past few years, experiments with
conditional Gdnf knockout mice have suggested that GDNF is necessary for maintenance
of DA neurons in adulthood. In parallel, new methodologies for exogenous GDNF
delivery have been developed. Recently, it has been shown that a small population of
scattered, electrically interconnected, parvalbumin positive (PV+) GABAergic interneurons
is responsible for most of the GDNF produced in the rodent striatum. In addition,
cholinergic striatal interneurons appear to be also involved in the modulation of striatal
GDNF. In this review, we summarize current knowledge on brain GDNF delivery,
homeostasis, and its effects on nigrostriatal DA neurons. Special attention is paid to the
therapeutic potential of endogenous GDNF stimulation in PD.
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INTRODUCTION
Parkinson’s disease (PD) is a progressive, mainly idiopathic and
age-related, neuronal disorder that affects as much as 1% of
the population over 60 years (de Lau and Breteler, 2006). PD
causes severe postural, motor, and physiological impairments
that can reduce life expectancy. Although PD is a systemic
disease, affecting central and peripheral neurons, the most
disabling motor symptoms are due to the progressive death
of dopaminergic (DA) neurons in the substantia nigra pars
compacta (SNpc), a mesencephalic nucleus that sends projections
to the striatum (caudate nucleus (Cd) and putamen) and is
involved in motor control. Although pharmacological (pro-DA
drugs) and surgical (deep brain stimulation) therapies exist
to alleviate PD symptoms (see Tarazi et al., 2014), to date
there is no cure for PD despite intense efforts made to
develop new protocols, particularly cell replacement therapy, to
substitute or protect nigrostriatal cells affected by the disease.
The discovery by Lin et al. (1993) of a specific DA neurotrophic
factor secreted by rat glial cells -the glial cell line-derived
neurotrophic factor (GDNF)- opened a new perspective for PD
pathogenesis and therapy. This review will discuss the pros and

cons of using GDNF as a treatment for PD, highlighting the
potential therapeutic applicability of endogenous brain GDNF
activation.

GDNF ADMINISTRATION FOR TREATMENT OF PARKINSON’S
DISEASE: EARLY OBSERVATIONS AND CLINICAL TRIALS
GDNF and its structurally related trophic proteins artemin,
neurturin and persephin, are distant member of the transforming
growth factor-β superfamily (Airaksinen and Saarma, 2002). A
wealth of papers based on rodent and non-human primate models
have described the benefits of GDNF treatment on nigrostriatal
neurons. In early studies, GDNF showed a specific action on
survival of rat E16 midbrain DA neurons in culture and proved
to be a potent and selective stimulator of dopamine uptake
and neurite outgrowth in tyrosine hydroxylase positive (TH+)
neurons (Lin et al., 1993). These initial in vitro observations
led to immediate testing of GDNF effects on PD animal
models based on toxin-induced destruction of midbrain DA
neurons. Hoffer et al. (1994) used rats unilaterally injected with
6-hydroxydopamine (6-OHDA) in the nigrostriatal pathway. This
procedure elicits a rapid and permanent ipsilateral destruction
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of DA neurons that is manifested by a contralateral rotation
pattern in response to low doses of amphetamines, thus accurately
reflecting the degree of DA neuronal loss. In 6-OHDA-treated
animals, intranigral injection of 100 µg of recombinant human
GDNF reduced the rotations by ∼4-fold (Hoffer et al., 1994).
Similar rescue effects of GDNF were reported in an independent
study on the same rat model (Winkler et al., 1996). In 1995,
four articles described the potent neurotrophic effects of GDNF
on mesencephalic DA (Beck et al., 1995; Tomac et al., 1995a)
as well as motor (Oppenheim et al., 1995; Yan et al., 1995)
neurons in vivo; a year later the first non-human primate
data in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-
induced parkinsonian monkey model was published (Gash et al.,
1996). GDNF-treated monkeys showed functional improvement
of parkinsonian features along with increased levels of striatal
dopamine. The benefits claimed by GDNF use were unanimous,
although when it came to human patients the initial elation
dissipated.

Several human studies have been performed to test the effect
of striatal delivery of GDNF through a permanently implanted
cannula. The degree of symptomatic relief in these clinical
trials has varied from major improvement (Gill et al., 2003;
Love et al., 2005; Patel et al., 2005; Slevin et al., 2005) to no
benefit at all (Lang et al., 2006). Some patients enrolled in
these studies developed neutralizing antibodies as part of an
immune response to the recombinant human GDNF treatment
(Lang et al., 2006; Tatarewicz et al., 2007), whereas others simply
reacted to the placebo in a randomized trial (Lang et al., 2006).
In another study, intraventricular GDNF delivery resulted in
strong adverse effects (Nutt et al., 2003). A phase II clinical trial,
based on improved bilateral intra-putaminal GDNF injection,
has recently been launched at the Frenchay Hospital in Bristol
(UK) to overcome the inconsistent results previously obtained.
Progress to a treatment is hampered by the problem of delivering
GDNF to brain cells across the blood-brain barrier (Boado and
Pardridge, 2009). Thus, it seems that the simple administration
of the GDNF protein does not represent a sustainable treatment
for PD and alternative options have to be tested to exploit
the benefit of the potent trophic action of GDNF on DA
neurons.

ALTERNATIVE GDNF-BASED THERAPIES
Overcoming the blood-brain-barrier (BBB) obstacle for GDNF
delivery to the brain using a systemic route has became a
major technological objective (see Figure 1). Trojan horse
approaches were tested by the mean of systemic administration
of nanoliposomes engulfing a GDNF plasmid and engineered to
cross the BBB via trancytosis after coupling to the transferrin
receptor. This resulted to a near complete rescue of the
nigrostriatal system from 6-OHDA neurotoxicity in the rat brain
(Xia et al., 2008; Zhang and Pardridge, 2009). An attempt to fuse
GDNF to a monoclonal immunoglobulin (GDNF-IgG) directed
against the BBB cellular component proved to be potent in
mice (Fu et al., 2010), but this method failed when it was
tested on monkeys as no behavioral improvements were observed
(Ohshima-Hosoyama et al., 2012). Biodegradable GDNF-loaded
microspheres implanted in the striatum are an interesting

alternative to overcome the BBB problem since they sustainably
release recombinant GDNF for at least 8 weeks (Jollivet et al.,
2004a; Garbayo et al., 2009; Herrán et al., 2013), with long
protective effects lasting up to 24 weeks (Jollivet et al., 2004b).
Finally, the administration of GDNF by nasal route, using cationic
liposomes to increase their residence time through electrostatic
interactions at the olfactory epithelium, has recently been tested.
Intranasal GDNF given to rats, immediately prior to 6-OHDA
lesion, provided significant protection of striatal DA neurons
(Migliore et al., 2014).

In parallel with the studies based on the delivery of GDNF
peptide, considerable efforts have been made towards the
development of in vivo gene transfer by recombinant viral vectors
expressing the Gdnf gene (Figure 1). Bilateral intranigral delivery
of adenoviral vector constructs carrying the GDNF sequence (Ad-
Gdnf ) to adult rats prior to 6-OHDA lesion protected DA neurons
from toxin-induced cell death (Choi-Lundberg et al., 1997).
Although the experimental design was criticized (Pallini et al.,
1997), this landmark attempt was encouraging and thus followed
by several other studies based on viral vector-driven GDNF
strategy in rodent and monkey models (reviewed by Kordower
and Bjorklund, 2013). A key study reported that adeno-associated
virus (AAV)-Gdnf promoted motor recovery of parkinsonian
rats when injected in the striatum rather than in the SN region
(Kirik et al., 2000). Furthermore, intranigral AAV-Gdnf exhibited
histological neuroprotection on DA neuronal bodies but DA fibers
sprouting and functional recovery occurred only when AAV-Gdnf
was transduced in the striatum (Kirik et al., 2000, 2004). Several
viral vector based strategies have been developed to optimize
GDNF production, in particular inducible vectors in order to
control the timely expression of GDNF. For instance, injection
of a synthetic steroid mifepristone lead to highly increased levels
of GDNF expression from the inducible AAV-Gdnf. This allowed
the recovery of motor function in 6-OHDA lesioned rats, and
was associated to DA neuron protection in the SN (Tereshchenko
et al., 2014). Another newly reported approach used lentivirus
(LV) vectors transgenes fused with a destabilizing domain (DD).
The resulting fusion protein is unstable and rapidly cleared by the
proteasome unless it is stabilized by trimethoprim (TMP). Thus,
peripheral injection of TMP allows DD-GDNF stabilization in the
striatum (Tai et al., 2012). When applied to 6-OHDA lesioned
rats, the TMP-stabilized DD-GDNF protects the DA nigrostriatal
pathway and associated functional behavior (Quintino et al.,
2013). Pharmacological modulation of GDNF-expressing viral
vectors, still in initial stage of development, is particularly
attractive when considering new therapeutic approaches in
early disease stages to protect nigrostriatal degeneration and
concomitantly prevent adverse effects from sustained high GDNF
delivery. Biodegradable nanoparticles encompassing a plasmid
DNA coding for GDNF can get through the plasma membrane
of neurotensin receptor-expressing cells, such as DA neurons.
This non-viral targeted transfection has proved to be efficient
when used in rat PD models (Gonzalez-Barrios et al., 2006).
A set of experiments combining non-viral gene delivery with
systemic route of administration gave promising results. Multiple
intravenous injections of a lactoferrin (Lf)-modified vector,
expressing human GDNF, protected DA neurons and highly
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FIGURE 1 | Schematic summary of GDNF-delivery strategies
tested in human PD patients and rodent models. AAV,
adeno-associated virus; Ad, adenovirus; LV, lentivirus; Lf,

lactoferrin; SNpc, substantia nigra pars compacta; DA,
dopamine; Cd, caudate nucleus; Put, putamen; BBB,
blood-brain-barrier.

reduced the amphetamine-induced rotational behavior that
normally occurs after lesion by 6-OHDA intrastriatal injection
(Huang et al., 2009).

Evidently, not all studies have systematically reported positive
effect of viral GDNF vectors. Indeed, an herpes simplex virus
(HSV)-derived vector overexpressing GDNF presented toxic
effects while masking the potential benefits of GDNF (Monville
et al., 2004). Intranigral lentiviral injection of a vector expressing
the A30P mutant human α-synuclein provoked a selective and
progressive degeneration of the nigrostriatal DA neurons in
the treated rats (Lo Bianco et al., 2002). Preventive treatment
by LV-GDNF vector, successfully used in a monkey PD model
(Palfi et al., 2002), failed to modulate nigrostriatal degeneration
induced by the α-synuclein toxicity (Lo Bianco et al., 2004).
Surprisingly, the use of a tetracyclin-dependent LV-GDNF
expression in the striatum in normal rats provoked a dramatic
down-regulation of TH protein expression (Georgievska et al.,
2004).

Cell-based GDNF therapy, i.e., transplantation of GDNF-
expressing cells, has also been extensively tested. Two main
strategies have been used so far: (i) introduction of GDNF-
secreting cells in the lesioned nigrostriatal system; and

(ii) transplantation of DA-producing cells in association with
GDNF treatment to protect and to increase survival of grafted
cells. Successful intrastriatal transplantation of primary astrocytes
engineered to express GDNF prevented 6-OHDA-induced DA
neuronal death (Cunningham and Su, 2002). Interestingly, low
levels of GDNF released by these astrocytes (∼5 pg/g of striatum)
provided a remarkable robust neuroprotection. Neural stem
cells engineered to synthesize GDNF were also successfully used
to limit DA neuron degeneration in a 6-OHDA lesion mouse
model (Åkerud et al., 2001). Encapsulated GDNF-producing
cells may represent a valuable option since they will not migrate
out of the targeted region, the caudate-putamen, and can still
be removed in the event that some adverse effects may occur
(reviewed by Lindvall and Wahlberg, 2008). Pioneer work
from Tseng et al. (1997) used polymer-encapsulated fibroblasts
engineered to overexpress GDNF prior to be transplanted
next to the SN. Nanogram levels of continuous GDNF release
completely prevented degeneration of DA neurons induced
by medial forebrain bundle axotomy. Alternatively, trophic
factors-producing tissues, such as the carotid body (CB), have
been used as a source of GDNF. The CB is highly DA, bilateral,
O2-sensing organ that contains cells which produce unusual
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high levels of GDNF (López-Barneo et al., 1999; Villadiego et al.,
2005). Intrastriatal transplantation of CB cells produces clear
neuroprotective effects on DA neurons in rodent parkinsonian
models (Espejo et al., 1998; Muñoz-Manchado et al., 2013), and
amelioration, with indications of biological effects, in PD patients
(Mínguez-Castellanos et al., 2007). However, the therapeutic
action of CB is limited by the small amount of tissue available.
To overcome this limitation, new stem cell-based procedures
are being assayed to expand CB tissue before transplatation (see
Pardal et al., 2007; Platero-Luengo et al., 2014). The combination
of GDNF delivery and fetal DA grafts, to improve survival of
transplanted cells, has been largely tested in animal models
(Rodriguez-Pallares et al., 2012; Kauhausen et al., 2013), as
well as in PD patients (Mendez et al., 2000). GDNF promoted
survival of fetal mesencephalic cell transplants in the striatum
of 6-OHDA-lesioned rats, which was associated with functional
improvement (Yurek et al., 2009). However, this beneficial
effect was limited in time, as 6 months later the association of
grafted cells/LV-GDNF failed to support DA neuron survival.
Moreover, LV-GDNF induced some down regulation of TH in
the grafted cells. In similar experimental conditions, GDNF
had no effect on fetal mesencephalic graft outgrowth when
compared to other growth factors such as bFGF (Törnqvist et al.,
2000). GDNF has also been used to increase DA differentiation
and survival of embryonic (Buytaert-Hoefen et al., 2004) or
bone marrow stromal (Dezawa et al., 2004) stem cell-derived
DA neurons prior to transplantation. This procedure, that
represents an indirect use of GDNF, substantially alleviated
the rotation behavior induced by amphetamines in 6-OH
dopamine-lesioned rats. However, the use of GDNF to drive
stem cell-derived neuronal cells to produce DA is a procedure
that calls for caution, as safety of progenitor cell transplants is
always a key concern. Optimization of DA neuron maintenance
and GDNF delivery protocols has permitted recent preclinical
advances in the field. DA cells from ventral mesencephalon of
young donors (embryonic day 10) transplanted homotopically
in the nigral region, combined with the intrastriatal injection
of a AAV-GDNF, allowed graft survival, integration into the
medial forebrain bundle circuitry to innervate the striatum, and
functional motor recovery (Kauhausen et al., 2013). Together,
the data summarized in this section support a beneficial
neuroprotective action of exogenous GDNF on DA nigrostriatal
neurons.

GDNF SIGNALING ON DOPAMINERGIC NEURONS
GDNF shares the receptor tyrosine kinase rearranged during
transcription (Ret) with artemin, neurturin and persephin. Ret
activation requires association to a second glycosylphosphatidyl
inositol-anchored protein named GDNF family receptor α

(GFRα), of which four subtypes have been identified with
different affinities for ligands of the GDNF-family. The GDNF
homodimer specifically binds to two GFRα1 to form a
high affinity complex with the recruitment of Ret proteins
(Bespalov and Saarma, 2007). GDNF displays lower affinity for
GFRα2 and GFRα3. The Ret-GFRα1 complex formation induces
transphosphorylation of Ret tyrosine kinase residues which,
in turn, activates downstream signaling molecules (Figure 2)

such as the mitogen-activated protein kinase (MAPK) and
the phosphatidylinositol 3-kinase (PI3K)/Akt (Airaksinen and
Saarma, 2002). In vitro studies suggest that the protective effect
of GDNF on DA neurons involves the activation of the MAPK
and PI3K intracellular pathways (Ugarte et al., 2003; Onyango
et al., 2005). Aging mice (26 months) carrying a partial deletion
of Gfrα1 (heterozygous), show a decrease in TH fiber density in
the striatum accompanied by a lower number of TH+ neurons
in the SN. Additionally, these mice exhibit increased sensitivity
of nigrostriatal DA neurons to MPTP toxicity (Boger et al.,
2008). These observations suggest a pivotal role of GFRα1 in
the trophic protection by GDNF signaling. Specific ablation of
Ret in DA neurons (using a dopamine transporter-Cre/Ret-flox
mice) results in progressive loss of nigrostriatal DA neurons.
Spontaneous decrease of TH+ cells in the SNpc and striatal
innervation occurred in these mice and this was associated
with increased number of activated glial cells, a sign of CNS
injury (Kramer et al., 2007). GDNF signaling also utilizes c-
Src kinase to promote neurites outgrowth (Encinas et al., 2001).
Although the GFRα1/Ret complex is the most studied GDNF
receptor, it is known that this trophic factor can also bind
to alternative signaling system, e.g., NCAM (Paratcha et al.,
2003). This would explain why ablation of Ret does not produce
a phenotype similar to GDNF-deficiency (see Pascual et al.,
2011).

The data summarized in the previous paragraph strongly
suggest the requirement of direct GDNF trophic signaling to the
DA neurons for their survival. Ret and GFRα1 mRNA expressions
are up-regulated in the SNpc shortly after 6-OHDA lesion, a
trophic response to drug toxicity. After 3 to 6 days, the level of
expression of both Ret and GFRα1 mRNA decreased dramatically,
which could be explained by the loss of DA neurons observed after
6 days in this rat PD model (Marco et al., 2002). Ret is not specific
to GDNF but its activation is also enhanced by other ligands
such as GM1 ganglioside (Newburn et al., 2014). This observation
denotes a possible pharmacological induction of the GDNF
signaling cascade to promote a trophic response. The canonical
neurotrophic factor action requires retrograde communication
from the axon terminals to neuron cell bodies, partly explained by
the “signaling endosome hypothesis” where the activated receptor
is internalized and transported via the microtubules machinery
for cytosolic and nuclear signaling (Howe and Mobley, 2005;
Ibáñez, 2007). GDNF is no exception to this rule as it has been
demonstrated that 125I-GDNF injected into the rat striatum is
retrogradely transported to the cell body of SNpc neurons (Tomac
et al., 1995b).

The use of Gdnf -null mice has provided valuable data
regarding the role of endogenous GDNF on DA neuron survival.
Mice carrying GDNF deletion do not survive after birth
due to lack of the entire enteric nervous system and kidney
agenesis (Moore et al., 1996; Pichel et al., 1996; Sánchez et al.,
1996). However, embryonic development of the midbrain DA
nigrostriatal pathway is not affected by the lack of GDNF (Sánchez
et al., 1996). Mice with partial deletion of Gdnf (Gdnf+/−) suffer
from higher neuro-inflammation and loss of TH-positive neurons
with aging (Boger et al., 2006) or following lipopolysaccharide
(LPS) treatment (Granholm et al., 2011). However, whether
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FIGURE 2 | Schematic representation of the main signaling pathways
involved in the neuroprotective action of GDNF on dopaminergic
neurons. GDNF principally stimulates the binding of GFRα1 and Ret to
trigger intracellular signaling cascades leading to pro-survival genes
expression, calcium signaling and pro-apoptosis factors inhibition. Akt,
protein kinase B; Bcl-2, B cell lymphoma 2; Casp-3, caspase 3; c-Src,

proto-oncogene tyrosine-protein kinase Src; ERK, extracellular
signal-regulated kinase; HO1, heme oxygenase 1; IP3, inositol
tris-phosphate; JNK, c-Jun N-terminal kinase; MEK, mitogen extracellular
signal-regulated kinase; NF-κB, nuclear factor kappa B; PI-3K,
phosphatidylinositol 3 kinase; Raf, Raf kinase; ROS, reactive oxygen
species. Dashed arrows indicate indirect stimulation or inhibition.

GDNF might serve as an important target-derived neurotrophic
factor for adult nigral DA neurons has remained unknown until
conditional GDNF-KO mice were generated. Inducible CRE-LoxP
Gdnf -null mice were engineered to bypass the developmental
lethality caused by GDNF loss. In this model, a floxed-Gdnf allele
was deleted in adulthood by tamoxifen-induced Cre recombinase
activation, leading to a marked decrease of GDNF expression in
the striatum (Pascual et al., 2008). Strikingly, these mice showed a
progressive and selective death of the catecholaminergic neuronal
population in the substantia nigra (SN), ventral tegmental
area, and locus coeruleus with associated locomotor dysfunction
(Pascual et al., 2008). These data further support the notion that
adult mammalian mesencephalic catecholaminergic neurons rely
on the continuous input of endogenous GDNF, an observation
that remains to be demonstrated with other animals models and
in the human brain.

MECHANISMS INVOLVED IN THE PROTECTIVE EFFECT OF
GDNF
It is postulated that GDNF protects the DA nigrostriatal
system by interacting with several cellular pathways involved in
apoptosis, metabolism, and redox homeostasis (see Figure 2).
GDNF may prevent apoptosis in the DA neuron population
by directly up-regulating the anti-apoptotic proteins B cell
lymphoma 2 (Bcl-2) and Bcl-X via PI3K signaling (Sawada
et al., 2000). The neuroprotective action by GDNF on the

nigrostriatal system might also involve the activation of protein
kinase CK2 as demonstrated in parkinsonian rats (Chao et al.,
2006). Moreover, GDNF induces nuclear factor κB (NF-κB)
pathways to promote neuronal survival from toxic insults (Cao
et al., 2008). Other targets of GDNF are caspase-3 and the
endoplasmic reticulum stress-related genes. Treatment of primary
mesencephalic rat cultures with lactacystin inhibits the ubiquitin-
proteasome system and leads to apoptosis of DA neurons.
However, pretreatment with GDNF prevents DA neuronal death
by suppressing caspase-3 activation and endoplasmic reticulum
stress (Li et al., 2007). Intrastriatal infusion of GDNF prevents
lactacystin-induced DA neuron loss by inhibiting the pro-
apoptotic molecules Jun N-terminal kinase (JNK) and p38 and
activating the pro-survival Akt and MAPK pathways (Du et al.,
2008).

As it occurs in the classical neurotrophic models, GDNF
promotes the DA phenotype in DA neurons, and in this way exerts
some of its neuroprotective actions. GDNF seems to increase
cellular levels of transcription factors, such as Nurr1 and Pitx3,
involved in the expression of a set of genes—TH, vesicular
monoamine transporter (Vmat2), dopamine transporter (Dat)
and aromatic L-amino acid decarboxylase (Aadc)—involved
in dopamine metabolism, (Lei et al., 2011). When added to
the culture medium of midbrain-derived neural stem cells
(mdNSCs), GDNF induced a DA phenotype associated with
Nurr1 and Pitx3 up-regulation. Transplantation of these cells
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into the striatum of 6-OHDA-injected rats greatly prevented
the amphetamine-induced contralateral rotation in the lesioned
animals (Lei et al., 2011).

Although the causes of DA neuron degeneration in PD remain
unclear, mitochondrial dysfunction and oxidative stress induced
by reactive oxygen species (ROS) are known to have a pathogenic
role early in the disease process (Subramaniam and Chesselet,
2013). Interestingly, striatal GDNF administration moderately
enhances the activity of certain enzymes involved in the
enzymatic detoxification of ROS: superoxide dismutase, catalase
and glutathione peroxidase (Chao and Lee, 1999). Moreover,
GDNF administration in the rat striatum prevents 6-OHDA-
induced ROS formation, evidenced by protein carbonyls and 4-
hydroxynonenal, and thus protects DA neurons from oxidative
stress (Smith and Cass, 2007). GDNF seems to negatively regulate
the expression of heme oxygenase-1 (HO-1) to reduce oxidative
stress (Saavedra et al., 2005).

A proteomic analysis revealed 46 specifically regulated
proteins in the striatum of MPTP mice 4 and 72 h after striatal
GDNF injection. These proteins are related to cell differentiation,
system development, cell structure and motility, energy pathways,
transport, apoptosis, cell proliferation and response to stress-
regulating genes (Hong et al., 2009). However, none of them are
involved in GFRα1-Ret downstream-activated pathways. Taking
into account that post-transcriptional modification, such as
phosphorylation, were not detected with the aforementioned
method, a thorough proteomic examination of posttranslational
modifications elicited by GDNF on DA neurons would
probably provide relevant information for understanding
the neuroprotective action of GDNF. It has been reported that
striatal GDNF inhibits Shh production by DA neurons and, in
turn, Shh released at the striatal DA terminals down-regulates
Gdnf gene expression (Gonzalez-Reyes et al., 2012). This concept
is attractive, as the mutual repression of Shh and GDNF would
allow DA neurons to dynamically control neurotrophic factor
production in the striatum. The level of striatal Gdnf mRNA,
and the number of GDNF-expressing parvalbumin-positive
(PV+) interneurons (see below) do not seem to be affected
by MPTP-derived lesions of nigrostriatal neurons (Hidalgo-
Figueroa et al., 2012). However, to what extent the integrity
of the DA nigrostriatal pathway modulates the survival and
activity of GDNF-producing striatal interneurons is under
debate. Although much progress has been done regarding the
molecular mechanism of GDNF neurotrophic/neuroprotective
action, whether the intracellular pathways involved are the
same in normal and lesioned cells and to what extent GDNF
production is cell autonomous or depend on the activity of the
relevant neuronal networks are fundamental questions yet to be
resolved.

In addition to its well-established neurotrophic role, GDNF
may also modulate the activity of DA nerve terminals at the basal
ganglia. Amperometric recordings from midbrain DA neurons
showed that exposure to GDNF increases quantal release of
catecholamines as well as the density of axonal varicosities (Pothos
et al., 1998). GDNF enhances basal levels and release of DA and
DA metabolites evoked by potassium or amphetamine in primary
cultured ventral midbrain (VM) DA neurons (Wang et al., 2001),

striatal slices (Gomes et al., 2006), and striatal synaptosomes
(Gomes et al., 2009). Similar effects of GDNF have also been
observed in vivo by microdialysis measurements (Hebert et al.,
1996; Xu and Dluzen, 2000; Cass and Peters, 2010). Therefore,
GDNF may not only prevent DA neurons from degeneration but
also potentiate DA release and turnover by some as yet unknown
mechanism.

ENDOGENOUS GDNF EXPRESSION: STRIATUM
Knowledge of where and when GDNF is expressed in the adult
brain is fundamental to understand the physiological role of this
trophic factor and the mechanisms that regulate its synthesis.
Eventually, this could make it possible to pharmacologically
stimulate endogenous GDNF production as a way to increase
the level of GDNF available at the striatal DA nerve terminals.
Unfortunately, studies on GDNF expression performed with
antibodies are challenged by specificity considerations. However,
there are several studies in which either Gdnf mRNA expression
was analyzed by in situ hybridization (ISH), or mouse models
with reporter genes were used to estimate Gdnf promoter activity.
In rodents, Gdnf mRNA is broadly expressed in the developing
embryo (Golden et al., 1999), although in adult mice its
expression is rather limited to few organs, with the highest content
found in the ovary and testis. In the adult rodent brain, Gdnf
mRNA expression is consistently observed in restricted discrete
cells of the striatum, thalamic structures, nucleus accumbens,
cerebellum and hippocampus (Schaar et al., 1993; Nosrat et al.,
1996; Trupp et al., 1997). Using a β-gal reporting mouse model
(Sánchez et al., 1996), GDNF expression in adult mice brain was
restricted to the dorsal and ventral striatum, the anteroventral
nucleus of the thalamus, the septum and, interestingly, the
subcommissural organ (Pascual et al., 2008). Curiously, GFRα1
and Ret do not share the same expression pattern than GDNF
and are broadly expressed in the adult CNS. Noteworthy, GDNF
receptor mRNAs are not detected in the striatum, but highly
expressed in the SNpc (Trupp et al., 1997), which again supports
that GDNF may specifically act on SNpc DA neurons that
project to the striatum. This also indicates that no other striatal
cells could benefit from its trophic action. GDNF protein levels
have been measured by enzyme-linked immunosorbant assay
(ELISA) in lysates of caudate/putamen, SN, cerebellum, frontal
cortex, and the cerebrospinal fluid (CSF) of PD and non-PD
postmortem human brains. GDNF concentration in the range
of 40–70 pg/mg total protein was relatively constant between
control and PD patients in the SN and Cd and putamen,
with lower concentrations reported in the cerebellum and the
frontal cortex (10–15 pg/mg). However, GDNF was no detected
in the CSF (Mogi et al., 2001). Additionally, polymorphisms
in the GDNF gene have been found in PD and non PD
patients with no apparent correlation between mutation and
disease (Wartiovaara et al., 1998). In another study, depletion
of GDNF, but no other neurotrophic factors, was detected
in the SN of parkinsonian patients (Chauhan et al., 2001).
Although these results must be taken with caution as they
are based on immunohistochemical analyses, they suggest that
down regulation of GDNF might participate in the onset of
PD pathophysiology. However, whether alterations in GDNF
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FIGURE 3 | Protection of the dopaminergic nigrostriatal pathway by
striatal GDNF and activation of endogenous GDNF production.
Dopaminergic (DA) neurons (green) located in the substantia nigra pars
compacta (SNpc) innervate the caudate-putamen to modulate the activity of
GABAergic medium spiny neurons (gray ), parvalbumin (PV)-positive
interneurons (red) and other cholinergic (ACh) or somatostatin (SS)

interneurons (brown). PV neurons form an ensemble of synchronized cells
through multiple dendrodendritic electrical synapses (resistance in the
scheme), and release GDNF at the nerve terminals to provide trophic support
to DA neurons via retrograde signaling (dotted arrow). Proposed strategies to
enhance the endogenous GDNF production are summarized in the purple box
(right).

synthesis and release have any causative pathogenic role in PD is
for the moment unknown.

There are few studies focused on the cell distribution of striatal
GDNF. In an ISH-based study over 60% of the choline acetyl-
transferase (ChAT) positive interneurons were reported to express
Gdnf mRNA (Bizon et al., 1999). In the same study, a significant
fraction (17–42%) of GABAergic neurons expressed Gdnf mRNA,
however it did not discriminate between the medial spiny neurons
(the most abundant cells in the striatum) and the GABAergic
interneurons. As PV+ interneurons represent only a small fraction
of GABA-positive cells, it could be concluded from these data
that PV+ neurons account for a small proportion of striatal cells
expressing GDNF (Bizon et al., 1999). However, in this study a
majority of PV+ cells expressed NGF and acidic fibroblast growth
factor (FGF1), which are thought to provide trophic protection
to excitotoxic insult. Interestingly, some cells were found highly
co-expressing GDNF and FGF1 (Bizon et al., 1999). In contrast
with these observations, the use of a Gdnf-LacZ mouse model
(Sánchez et al., 1996) unveiled a different population of GDNF-
expressing cells in the striatum. Gdnf promoter-driven LacZ
expression, revealed by β-galactosidase activity (XGal staining),
demonstrates that Gdnf is expressed in more than 80% of
striatal PV+ GABAergic interneurons. Moreover, ∼95% of the
GDNF-positive striatal neurons are PV+, while the remaining
GDNF+ cells are either cholinergic (ACh) or somatostatinergic
(SS) interneurons (Hidalgo-Figueroa et al., 2012; see Figure 3).
As yet there is no explanation for the discrepancy between these

two studies performed in different models of rat (Bizon et al.,
1999) and mouse (Hidalgo-Figueroa et al., 2012). However the
particularly scattered distribution of PV+ cells throughout the
mouse striatum, their electrical coupling by dendro-dendritic
gap junctions (Fukuda, 2009) and their high resistance to
excitotoxicity, make them a target of choice for pharmacological
modulation. On the other hand, although the number of ACh+
and GDNF+ cells does not seem to be too high, they may
have a significant contribution to striatal GDNF homeostasis, as
degeneration of cholinergic interneurons following the injection
of the cholinotoxin AF64α results in a 30% reduction in
striatal GDNF protein content (Gonzalez-Reyes et al., 2012).
This decrease of GDNF production might be directly inferred
to the loss of ACh+ interneurons, or a consequence of a drop
of cholinergic input to the PV+ interneurons (Chang and Kita,
1992). Despite these recent advances in the identification of
GDNF-producing interneurons in the rodent striatum, the nature
of the cells that produce GDNF in the human striatum remains as
yet unidentified.

In the lesioned striatum, reactive astrocytosis occurs in parallel
to an increase in GDNF expression (Nakajima et al., 2001).
Similarly, in the DA-depleted striatum, reactive astrocytes results
in expression of Gdnf mRNA, as shown by both quantitative
RT-PCR and ISH (Nakagawa and Schwartz, 2004). However,
in the Gdnf-LacZ mice, none of the GDNF expressing cells
are of astrocyte or microglia origin 7 and 21 days post-MPTP,
despite a significant increase of the astrocytic population
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occurred (Hidalgo-Figueroa et al., 2012). Unilateral nigrostriatal
lesions with 6-OHDA produce a 50% decrease in the number
of PV+ neurons in the ipsilateral side in comparison with
the contralateral side (Proschel et al., 2014). This brings an
interesting contradiction with the MPTP-treated Gdnf-LacZ
mice that displayed no difference in PV/GDNF expression in
the injured striatum (Hidalgo-Figueroa et al., 2012). These
differences may be due to the use of rats vs. mice and
distinct parkinsonian models (neurotoxic drugs and route of
administration).

STIMULATION OF STRIATAL ENDOGENOUS GDNF
PRODUCTION
Since GDNF has a potent neurotrophic effect on DA neurons
and it is highly expressed in the striatum, pharmacological
or physical interventions aiming at up-regulating endogenous
GDNF production are of major potential medical relevance.
Several drugs have been tested to boost striatal GDNF expression
thus far (see Table 1). For instance, a weeklong systemic injection
of 1,25-dihydroxyvitamin D3 (calcitriol) induced Gdnf mRNA
and protein expression in the rat striatum, presumably via the
activation of vitamin D receptors. Longer treatment with calcitriol
prevented DA neuron loss in 6-OHDA-lesionned rats (Smith
et al., 2006). Monoamine oxidase (MAO) inhibitors rasagiline
and selegiline, broadly used to treat PD patients, up-regulate in
vitro GDNF expression via NF-κB internalization (Mizuta et al.,
2000; Maruyama et al., 2004; Bar-Am et al., 2005). It would be
interesting to test these MAO inhibitors in vivo. Valproic acid,
an anti-epileptic drug, induces GDNF secretion in the culture
medium of rat astrocytes, which partially prevents DA cell loss
after LPS or MPTP treatment (Chen et al., 2006). Valproate
is a powerful histone deacetylase inhibitor, therefore facilitating
chromatin relaxation and transcriptional activation, which is
suggested to facilitate transcription of neurotrophic factors
(Harrison and Dexter, 2013). Indeed, treatment with histone
deacetylase inhibitors increased Gdnf and Bdnf expression and
preserved DA neuronal function from MPTP injury. Moreover,
valproate induced a marked increase in Gdnf promoter activity
and promoter-associated histone H3 acetylation (Wu et al., 2008).
Other mood stabilizer drugs have been reported to trigger GDNF
release by rat glioblastoma cell line (see Table 1 for details).
In any case, these data must be interpreted cautiously, as rat
cortical primary astrocyte and cell line cultures used in these
studies are experimental models very different from the striatum
in situ.

Noribogaine, a metabolite of the naturally occurring alkaloid
ibogaine, bears anti-addictive effects on alcohol and other drugs
consumption. In rats, the effect of ibogaine on the reduction
of ethanol intake is located in the ventral tegmental area a DA
mesencephalic region medial to the SN. Systemic injection of
ibogaine stimulates Gdnf mRNA expression in the midbrain
of both rats and mice, and when added to the SH-SY5Y
adrenergic cell line (He et al., 2005; Carnicella et al., 2010).
Although ibogaine/noribogaine is known to act as an agonist to
5-HT2A and κ-opioid receptors and as an antagonist to NMDA
receptors, the mechanism by which it induces Gdnf mRNA
expression remains to be deciphered. Another potential stimulant

of Gdnf mRNA and protein expression in mouse striatal neurons
is the metabotropic glutamate receptor 3 agonist LY379268
(Battaglia et al., 2009). The organotellurium compound AS101
exerts diverse biologic activities and holds great potential in
PD. Systemic application of this immunomodulator prevents
neurotoxicity and behavioral deficits induced by 6-OHDA striatal
injections in rats. Besides activation of the Ras-Raf-MEK-
Erk cascade leading to cell growth and survival, AS101 up-
regulates GDNF levels by inhibiting interleukin-10 in primary
astrocyte cultures as well as in the rat SN (Sredni et al.,
2007). It is surprising, however, that this compound has not
been further studied in regard to its potential effect on GDNF
expression.

Chinese medicinal plants also bring interesting molecules
such as echinacoside, a polyphenol natural product that when
injected peripherally alleviates MPTP-induced DA neuronal
loss. Echinacoside stimulates GDNF and BDNF and prevents
MPTP-induced apoptosis (Zhao et al., 2010). Puerarin, from
the roots of a kudzu plant Pueraria lobata, partially prevents the
chemically-induced DA neurodegeneration in mice and rats, and
stimulates striatal GDNF (Zhu et al., 2010, 2014). Naringin is
another recent example of a plant pigment (flavonoid) present
in grapefruits that seems to stimulate GDNF in the SN of
MPTP-treated mice (Jung et al., 2014; Leem et al., 2014).

An elegant strategy used to activate endogenous GDNF is
based on an engineered zinc-finger protein (ZFP) that specifically
activates the GDNF promoter (Laganiere et al., 2010). In this
work, a six ZFPs sequence carried by an AAV vector was designed
to target rat, human and monkey Gdnf promoters (hGDNF-
ZFP). Microarray data from in vitro assays showed a very
specific increase of Gdnf mRNA expression while the rest of
the genomic activity remained unchanged. hGDNF-ZFP infused
into the striatum of normal adult rats 4 weeks before triggering
neurotoxicity by a 6-OHDA striatal injection, increased GDNF
production in the striatum and improved motor activity in
lesioned rats (Laganiere et al., 2010). This methodology could
be potentially applicable to prevent DA neuron degeneration
in genetic cases in which the disease can be diagnosed before
appearance of the clinical symptoms. Whether hGDNF-ZFP
induces GDNF expression in the striatal cells that normally
synthetize the trophic factor, or if other cell types are also put
to contribution, is a point that needs to be clarified. Recently,
stimulation of the intracellular Sigma-1 receptor (Sig-1R) by
the agonist PRE-084 (Su et al., 1991) showed neurorestorative
properties in 6-OHDA-treated mice (Francardo et al., 2014). PRE-
084 also induced a moderate, but significant, increase of GDNF
protein in the striatum (∼6% over vehicle treatment) and in the
SN (∼14%) whereas no difference was observed in the Sig-1R-null
mice (Francardo et al., 2014). Quantification with inadequately
characterized anti-GDNF antibodies remains a weak point in
several of these studies (Battaglia et al., 2009; Di Liberto et al.,
2011; Campos et al., 2012; Lee et al., 2013; Francardo et al., 2014).
Such antibodies need to be tested on GDNF-KO tissue extracts
as they may give false positive bands of the expected molecular
size (authors’ unpublished observation), and this may contribute
to overstatement on the efficiency of certain drugs in stimulating
GDNF expression.
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In parallel to the pharmacological agents, noninvasive
approaches are also being considered to stimulate endogenous
brain GDNF production. In vitro analysis has revealed that
GDNF is secreted both tonically and after depolarization of
cells with high K+, suggesting that in vivo GDNF could be
released in an activity dependent manner (Lonka-Nevalaita et al.,
2010). Transcranial magnetic stimulation (TMS) has been used
for some time with little insights regarding its actual effect
on neurons. A recent study made an attempt to use TMS
on rats to assess the effect on GDNF production. Repeated
TMS (rTMS), at 10 Hz, during 20 min for 4 weeks proved
to be beneficial to unilaterally 6-OHDA-lesioned rats with
improvement of behavioral test scores, increase of SNpc TH+
neuron number and fiber density as well as GDNF, NGF and
PDGF levels in the striatum (Lee et al., 2013). However, the
mechanisms leading to the positive action of rTMS on striatal
neurotrophin expression and the associated neurorestorative
effect are unknown. Electroconvulsive shock (ECS), a standard
psychiatric therapy provoking seizures to provide relief from
psychiatric illnesses, is known to improve motor function in
PD animal models. ECS prevents neurodegeneration of the
DA nigrostriatal pathway observed after 6-OHDA injections.
Daily ECS treatment to healthy rats for 7 days stimulates
GDNF protein expression in the SN but not in the striatum
(Anastasia et al., 2007). Moreover, anti-GDNF IgG inhibits the
neuroprotective effect of chronic ECS treatment (Anastasía et al.,
2011). It is however not clear how GDNF is up-regulated in
the SN since its expression is located in the striatum where
no change in protein expression is observed after ECS. A far-
fetched explanation would involve the participation of a large
ECS-induced glutamate release, which may stimulate GDNF
expression and release by the surrounding astrocytes (Yamagata
et al., 2002).

Finally, physical exercise (Zigmond et al., 2009), and food
restriction diets (Maswood et al., 2004), have both been suggested
to have a neuroprotective effect. For example in rats, placing a
cast to immobilize the limb ipsilateral to the 6-OHDA injection,
thus forcing the use of the contralateral limb, reduces behavioral
deficits and DA neuron loss in the lesioned striatum. This also
increases GDNF protein content in the striatum (Cohen et al.,
2003). Protective effect of exercise on the nigrostriatal DA system
associated to an increase of GDNF protein in the 6-OHDA
lesioned striatum has been reported in other studies (Tajiri et al.,
2010; Lau et al., 2011). Yet, it remains unexplained how exercise
can positively modulate GDNF expression, as well as other growth
factors, in the striatum and SN. Altogether, the data summarized
in this section demonstrate that activation of endogenous GDNF
is feasible and therefore further research should be done to
determine what methodology, or combination of techniques,
can produce more consistent protection for DA neurons and
terminals (Figure 1).

CONCLUDING REMARKS
Two decades have passed since the discovery of GDNF and
much advance has been produced regarding its cellular effects
and neuroprotective action on DA neurons. However, it still
remains unclear which are the main factors determining GDNF

production by brain cells and whether GDNF can effectively be
used as a therapeutic agent for PD. Despite intense preclinical
research and some clinical studies have been performed,
intrastriatal delivery or systemic administration of GDNF have
failed so far to provide robust and reproducible methodologies
applicable to a large number of PD patients. Intrastriatal
transplantation of GDNF-producing cells has worked well in
animal models but is still confronted with several limitations
(e.g., graft stability, cell survival, and sufficient cell number) for
its translation to the clinical setting. The discovery of a specific
set of striatal PV+ neurons, organized as a functional ensemble,
responsible for production of most of the striatal GDNF, offers
a well-identified target to stimulate endogenous production
of GDNF. This electrically (gap-junction) interconnected PV+
neuronal pool is particularly attractive, as stimulation of a few of
these cells could induce a synchronized activation of the whole
population. However, the actual role of PV+ cells in nigrostriatal
protection and the functional relations between the different
subclasses of interneurons (GABAergic and cholinergic) need to
be evaluated by selective deletion of the Gdnf gene in each one of
these cell types. In addition to the striatum, PV+ neurons are also
present in other parts of the brain, in particular in the cerebral
cortex. As cortical PV+ neurons do not significantly produce
GDNF, it would be interesting to investigate molecular differences
between cortical and striatal PV+ neurons that make the latter
capable of producing GDNF. Most of the research on GDNF has
been done on non-human samples and models. The actual role
of human striatal GDNF and the identification of human striatal
cells producing this trophic factor are questions that should be
urgently addressed by experimental work. GDNF therapy holds
much hope and still remains an important field of investigation
in PD. Combined with early diagnosis, neuroprotection by
endogenous GDNF stimulation may be a potential preventive
therapy to PD patients.
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