28 research outputs found

    A Translational Regulator, PUM2, Promotes Both Protein Stability and Kinase Activity of Aurora-A

    Get PDF
    Aurora-A, a centrosomal serine-threonine kinase, orchestrates several key aspects of cell division. However, the regulatory pathways for the protein stability and kinase activity of Aurora-A are still not completely understood. In this study, PUM2, an RNA-binding protein, is identified as a novel substrate and interacting protein of Aurora-A. Overexpression of the PUM2 mutant which fails to interact with Aurora-A, and depletion of PUM2 result in a decrease in the amount of Aurora-A. PUM2 physically binds to the D-box of Aurora-A, which is recognized by APC/CCdh1. Overexpression of PUM2 prevents ubiquitination and enhances the protein stability of Aurora-A, suggesting that PUM2 protects Aurora-A from APC/CCdh1-mediated degradation. Moreover, association of PUM2 with Aurora-A not only makes Aurora-A more stable but also enhances the kinase activity of Aurora-A. Our study suggests that PUM2 plays two different but important roles during cell cycle progression. In interphase, PUM2 localizes in cytoplasm and plays as translational repressor through its RNA binding domain. However, in mitosis, PUM2 physically associates with Aurora-A to ensure enough active Aurora-A at centrosomes for mitotic entry. This is the first time to reveal the moonlight role of PUM2 in mitosis

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    Consensus guideline for the diagnosis and management of mannose phosphate isomerase-congenital disorder of glycosylation (MPI-CDG)

    No full text
    Mannose phosphate isomerase-congenital disorder of glycosylation (MPI-CDG) deficiency is a rare subtype of congenital disorders of protein N-glycosylation. It is characterised by deficiency of MPI caused by pathogenic variants in MPI gene. The manifestation of MPI-CDG is different from other CDGs as the patients suffer dominantly from gastrointestinal and hepatic involvement whereas they usually do not present intellectual disability or neurological impairment. It is also one of the few treatable subtypes of CDGs with proven effect of oral mannose. This article covers a complex review of the literature and recommendations for the management of MPI-CDG with an emphasis on the clinical aspect of the disease. A team of international experts elaborated summaries and recommendations for diagnostics, differential diagnosis, management, and treatment of each system/organ involvement based on evidence-based data and experts' opinions. Those guidelines also reveal more questions about MPI-CDG which need to be further studied.status: Published onlin

    Discovery of a distinct domain in cyclin A sufficient for centrosomal localization independently of Cdk binding

    No full text
    Centrosomes have recently emerged as key regulators of the cell cycle. The G1/S transition requires a functional centrosome, and centrosomal localization of numerous proteins, including cyclin/Cdk complexes, is important for the G2/M transition. Here we identify a modular centrosomal localization signal (CLS) localizing cyclin A to centrosomes independently of Cdk binding. The cyclin A CLS is located in a distinct part of the molecule compared with the cyclin E CLS and includes the MRAIL hydrophobic patch involved in substrate recognition. The cyclin A CLS interacts with p27KIP1, and expression of p27KIP1 removes cyclin A but not cyclin E from centrosomes. Expression of the cyclin A CLS displaces both endogenous cyclin A and E from centrosomes and inhibits DNA replication, supporting an emerging concept that DNA replication is linked to centrosomal events. Structural analysis indicates that differences in surface charge and length of the C-terminal helix explain why the MRAIL region in cyclin E is not a functional CLS. These results indicate that the cyclin A CLS may contribute to targeting and recognition of centrosomal Cdk substrates and is required for specific effects of p27KIP1 on cyclin A-Cdk2

    A mutation in SLC37A4 causes a dominantly inherited congenital disorder of glycosylation characterized by liver dysfunction

    No full text
    International audienceSLC37A4 encodes an endoplasmic reticulum (ER)-localized multitransmembrane protein required for transporting glucose-6-phosphate (Glc-6P) into the ER. Once transported into the ER, Glc-6P is subsequently hydrolyzed by tissue-specific phosphatases to glucose and inorganic phosphate during times of glucose depletion. Pathogenic variants in SLC37A4 cause an established recessive disorder known as glycogen storage disorder 1b characterized by liver and kidney dysfunction with neutropenia. We report seven individuals who presented with liver dysfunction multifactorial coagulation deficiency and cardiac issues and were heterozygous for the same variant, c.1267C>T (p.Arg423*), in SLC37A4; the affected individuals were from four unrelated families. Serum samples from affected individuals showed profound accumulation of both high mannose and hybrid type N-glycans, while N-glycans in fibroblasts and undifferentiated iPSC were normal. Due to the liver-specific nature of this disorder, we generated a CRISPR base-edited hepatoma cell line harboring the c.1267C>T (p.Arg423*) variant. These cells replicated the secreted abnormalities seen in serum N-glycosylation, and a portion of the mutant protein appears to relocate to a distinct, non-Golgi compartment, possibly ER exit sites. These cells also show a gene dosage-dependent alteration in the Golgi morphology and reduced intraluminal pH that may account for the altered glycosylation. In summary, we identify a recurrent mutation in SLC37A4 that causes a dominantly inherited congenital disorder of glycosylation characterized by coagulopathy and liver dysfunction with abnormal serum N-glycans
    corecore