386 research outputs found

    The Index of (White) Noises and their Product Systems

    Full text link
    (See detailed abstract in the article.) We single out the correct class of spatial product systems (and the spatial endomorphism semigroups with which the product systems are associated) that allows the most far reaching analogy in their classifiaction when compared with Arveson systems. The main differences are that mere existence of a unit is not it sufficient: The unit must be CENTRAL. And the tensor product under which the index is additive is not available for product systems of Hilbert modules. It must be replaced by a new product that even for Arveson systems need not coincide with the tensor product

    Spin Foams and Noncommutative Geometry

    Get PDF
    We extend the formalism of embedded spin networks and spin foams to include topological data that encode the underlying three-manifold or four-manifold as a branched cover. These data are expressed as monodromies, in a way similar to the encoding of the gravitational field via holonomies. We then describe convolution algebras of spin networks and spin foams, based on the different ways in which the same topology can be realized as a branched covering via covering moves, and on possible composition operations on spin foams. We illustrate the case of the groupoid algebra of the equivalence relation determined by covering moves and a 2-semigroupoid algebra arising from a 2-category of spin foams with composition operations corresponding to a fibered product of the branched coverings and the gluing of cobordisms. The spin foam amplitudes then give rise to dynamical flows on these algebras, and the existence of low temperature equilibrium states of Gibbs form is related to questions on the existence of topological invariants of embedded graphs and embedded two-complexes with given properties. We end by sketching a possible approach to combining the spin network and spin foam formalism with matter within the framework of spectral triples in noncommutative geometry.Comment: 48 pages LaTeX, 30 PDF figure

    Extensions of C*-dynamical systems to systems with complete transfer operators

    Full text link
    Starting from an arbitrary endomorphism α\alpha of a unital C*-algebra AA we construct a bigger C*-algebra BB and extend α\alpha onto BB in such a way that the extended endomorphism α\alpha has a unital kernel and a hereditary range, i.e. there exists a unique non-degenerate transfer operator for (B,α)(B,\alpha), called the complete transfer operator. The pair (B,α)(B,\alpha) is universal with respect to a suitable notion of a covariant representation and depends on a choice of an ideal in AA. The construction enables a natural definition of the crossed product for arbitrary α\alpha.Comment: Compressed and submitted version, 9 page

    Weak charge form factor and radius of 208Pb through parity violation in electron scattering

    Get PDF
    We use distorted wave electron scattering calculations to extract the weak charge form factor F_W(q), the weak charge radius R_W, and the point neutron radius R_n, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer q=0.475 fm−1^{-1}. We find F_W(q) =0.204 \pm 0.028 (exp) \pm 0.001 (model). We use the Helm model to infer the weak radius from F_W(q). We find R_W= 5.826 \pm 0.181 (exp) \pm 0.027 (model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in R_W from uncertainties in the surface thickness \sigma of the weak charge density. The weak radius is larger than the charge radius, implying a "weak charge skin" where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius R_n=5.751 \pm 0.175 (exp) \pm 0.026 (model) \pm 0.005 (strange) fm$, from R_W. Here there is only a very small error (strange) from possible strange quark contributions. We find R_n to be slightly smaller than R_W because of the nucleon's size. Finally, we find a neutron skin thickness of R_n-R_p=0.302\pm 0.175 (exp) \pm 0.026 (model) \pm 0.005 (strange) fm, where R_p is the point proton radius.Comment: 5 pages, 1 figure, published in Phys Rev. C. Only one change in this version: we have added one author, also to metadat

    Precision Electron-Beam Polarimetry using Compton Scattering at 1 GeV

    Get PDF
    We report on the highest precision yet achieved in the measurement of the polarization of a low energy, O\mathcal{O}(1 GeV), electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall~C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond micro-strip detector which was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector and its large acceptance. The polarization of the 180 Ό180~\muA, 1.161.16~GeV electron beam was measured with a statistical precision of <<~1\% per hour and a systematic uncertainty of 0.59\%. This exceeds the level of precision required by the \qweak experiment, a measurement of the vector weak charge of the proton. Proposed future low-energy experiments require polarization uncertainty <<~0.4\%, and this result represents an important demonstration of that possibility. This measurement is also the first use of diamond detectors for particle tracking in an experiment.Comment: 9 pages, 7 figures, published in PR

    Diagonalizing operators over continuous fields of C*-algebras

    Full text link
    It is well known that in the commutative case, i.e. for A=C(X)A=C(X) being a commutative C*-algebra, compact selfadjoint operators acting on the Hilbert C*-module HAH_A (= continuous families of such operators K(x)K(x), x∈Xx\in X) can be diagonalized if we pass to a bigger W*-algebra L∞(X)=A⊃AL^\infty(X)={\bf A} \supset A which can be obtained from AA by completing it with respect to the weak topology. Unlike the "eigenvectors", which have coordinates from A\bf A, the "eigenvalues" are continuous, i.e. lie in the C*-algebra AA. We discuss here the non-commutative analog of this well-known fact. Here the "eigenvalues" are defined not uniquely but in some cases they can also be taken from the initial C*-algebra instead of the bigger W*-algebra. We prove here that such is the case for some continuous fields of real rank zero C*-algebras over a one-dimensional manifold and give an example of a C*-algebra AA for which the "eigenvalues" cannot be chosen from AA, i.e. are discontinuous. The main point of the proof is connected with a problem on almost commuting operators. We prove that for some C*-algebras if h∈Ah\in A is a selfadjoint, u∈Au\in A is a unitary and if the norm of their commutant [u,h][u,h] is small enough then one can connect uu with the unity by a path u(t)u(t) so that the norm of [u(t),h][u(t),h] would be also small along this path.Comment: 21 pages, LaTeX 2.09, no figure

    High-Energy Carbon-Ions Implantation - An Attempt to Grow Diamond Inside Copper

    Get PDF
    1 MeV carbon ions were implanted into single-crystal copper which was then annealed in argon at temperatures ranging from 350 to 750-degrees-C. Regrowth of the radiation-damaged copper was examined by RBS-channeling measurements. Carbon segregation occurred on annealing at 750-degrees-C. Prolonged annealing at 750-degrees-C caused blistering of the copper layer over the buried carbon. After removal of the blistered copper overlayer, the previously buried carbon layer was examined by Raman scattering, showing that graphite is the dominant phase

    Quark-Hadron Duality in Neutron (3He) Spin Structure

    Full text link
    We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_1 of the neutron and 3^3He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c)^2. Global duality is observed for the spin-structure function g_1 down to at least Q^2 = 1.8 (GeV/c)^2 in both targets. We have also formed the photon-nucleon asymmetry A_1 in the resonance region for 3He and found no strong Q^2-dependence above 2.2 (GeV/c)^2.Comment: 13 pages, 3 figure
    • 

    corecore