1,076 research outputs found

    Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    Full text link
    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 μ\mum, produced at CiS, and 100-200 μ\mum thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of 1.4×1016neq/cm21.4\times10^{16}n_{eq}/cm^{2}.Comment: In proceedings of the 10th International Conference on Position Sensitive Detectors, PSD10 201

    Quantum critical properties of the Bose-Fermi Kondo Model in a large-N limit

    Full text link
    Studies of non-Fermi liquid properties in heavy fermions have led to the current interest in the Bose-Fermi Kondo model. Here we use a dynamical large-N approach to analyze an SU(N)xSU(κN\kappa N) generalization of the model. We establish the existence in this limit of an unstable fixed point when the bosonic bath has a sub-ohmic spectrum (|\omega|^{1-\epsilon} \sgn \omega, with 0<ϵ<10<\epsilon<1). At the quantum critical point, the Kondo scale vanishes and the local spin susceptibility (which is finite on the Kondo side for \kappa <1) diverges. We also find an \omega/T scaling for an extended range (15 decades) of \omega/T. This scaling violates (for ϵ≥1/2\epsilon \ge 1/2) the expectation of a naive mapping to certain classical models in an extra dimension; it reflects the inherent quantum nature of the critical point.Comment: 4 pages; v2: included clarifying discussions on why the omega/T scaling (for epsilon >=1/2) violates the naive mapping to classical models in an extra dimension and the implications of this observation about the nature of the QCP; v3: shortened to conform to the PRL length limi

    Thermoelectric transport through strongly correlated quantum dots

    Get PDF
    The thermoelectric properties of strongly correlated quantum dots, described by a single level Anderson model coupled to conduction electron leads, is investigated using Wilson's numerical renormalization group method. We calculate the electronic contribution, KeK_{\rm e}, to the thermal conductance, the thermopower, SS, and the electrical conductance, GG, of a quantum dot as a function of both temperature, TT, and gate voltage, vg{\rm v}_g, for strong, intermediate and weak Coulomb correlations, UU, on the dot. For strong correlations and in the Kondo regime, we find that the thermopower exhibits two sign changes, at temperatures T1(vg)T_{1}({\rm v}_g) and T2(vg)T_{2}({\rm v}_g) with T1<T2T_{1}< T_{2}. Such sign changes in S(T)S(T) are particularly sensitive signatures of strong correlations and Kondo physics. The relevance of this to recent thermopower measurements of Kondo correlated quantum dots is discussed. We discuss the figure of merit, power factor and the degree of violation of the Wiedemann-Franz law in quantum dots. The extent of temperature scaling in the thermopower and thermal conductance of quantum dots in the Kondo regime is also assessed.Comment: 21 pages, 12 figures; published versio

    Kondo Insulator to Semimetal Transformation Tuned by Spin-Orbit Coupling

    Full text link
    Recent theoretical studies of topologically nontrivial electronic states in Kondo insulators have pointed to the importance of spin-orbit coupling (SOC) for stabilizing these states. However, systematic experimental studies that tune the SOC parameter λSOC\lambda_{\rm{SOC}} in Kondo insulators remain elusive. The main reason is that variations of (chemical) pressure or doping strongly influence the Kondo coupling JKJ_{\text{K}} and the chemical potential μ\mu -- both essential parameters determining the ground state of the material -- and thus possible λSOC\lambda_{\rm{SOC}} tuning effects have remained unnoticed. Here we present the successful growth of the substitution series Ce3_3Bi4_4(Pt1−x_{1-x}Pdx_x)3_3 (0≤x≤10 \le x \le 1) of the archetypal (noncentrosymmetric) Kondo insulator Ce3_3Bi4_4Pt3_3. The Pt-Pd substitution is isostructural, isoelectronic, and isosize, and therefore likely to leave JKJ_{\text{K}} and μ\mu essentially unchanged. By contrast, the large mass difference between the 5d5d element Pt and the 4d4d element Pd leads to a large difference in λSOC\lambda_{\rm{SOC}}, which thus is the dominating tuning parameter in the series. Surprisingly, with increasing xx (decreasing λSOC\lambda_{\rm{SOC}}), we observe a Kondo insulator to semimetal transition, demonstrating an unprecedented drastic influence of the SOC. The fully substituted end compound Ce3_3Bi4_4Pd3_3 shows thermodynamic signatures of a recently predicted Weyl-Kondo semimetal.Comment: 6 pages, 5 figures plus Supplemental Materia

    Comment on "Zeeman-Driven Lifshitz Transition: A Model for the Experimentally Observed Fermi-Surface Reconstruction in YbRh2Si2"

    Full text link
    In Phys. Rev. Lett. 106, 137002 (2011), A. Hackl and M. Vojta have proposed to explain the quantum critical behavior of YbRh2Si2 in terms of a Zeeman-induced Lifshitz transition of an electronic band whose width is about 6 orders of magnitude smaller than that of conventional metals. Here, we note that the ultra-narrowness of the proposed band, as well as the proposed scenario per se, lead to properties which are qualitatively inconsistent with the salient features observed in YbRh2Si2 near its quantum critical point.Comment: 3 page

    Thermonuclear fusion. Summary

    Get PDF

    Magnetic field-induced quantum critical point in YbPtIn and YbPt0.98_{0.98}In single crystals

    Full text link
    Detailed anisotropic (H∥\parallelab and H∥\parallelc) resistivity and specific heat measurements were performed on online-grown YbPtIn and solution-grown YbPt0.98_{0.98}In single crystals for temperatures down to 0.4 K, and fields up to 140 kG; H∥\parallelab Hall resistivity was also measured on the YbPt0.98_{0.98}In system for the same temperature and field ranges. All these measurements indicate that the small change in stoichiometry between the two compounds drastically affects their ordering temperatures (Tord≈3.4_{ord}\approx3.4 K in YbPtIn, and ∼2.2\sim2.2 K in YbPt0.98_{0.98}In). Furthermore, a field-induced quantum critical point is apparent in each of these heavy fermion systems, with the corresponding critical field values of YbPt0.98_{0.98}In (Hcab^{ab}_c around 35-45 kG and Hcc≈120^{c}_c\approx120 kG) also reduced compared to the analogous values for YbPtIn (Hcab≈60^{ab}_c\approx60 kG and Hcc>140^{c}_c>140 kG
    • …
    corecore