48 research outputs found

    Surviving the heat:Heterogeneity of response in Saccharomyces cerevisiae provides insight into thermal damage to the membrane

    Get PDF
    Environmental heat stress impacts on the physiology and viability of microbial cells with concomitant implications for microbial activity and diversity. Previously, it has been demonstrated that gradual heating of Saccharomyces cerevisiae induces a degree of thermal resistance, whereas a heat shock results in a high level of cell death. Here, we show that the impact of exogenous nutrients on acquisition of thermal resistance differs between strains. Using single-cell methods, we demonstrate the extent of heterogeneity of the heat-stress response within populations of yeast cells and the presence of subpopulations that are reversibly damaged by heat stress. Such cells represent potential for recovery of entire populations once stresses are removed. The results show that plasma membrane permeability and potential are key factors involved in cell survival, but thermal resistance is not related to homeoviscous adaptation of the plasma membrane. These results have implications for growth and regrowth of populations experiencing environmental heat stress and our understanding of impacts at the level of the single cell. Given the important role of microbes in biofuel production and bioremediation, a thorough understanding of the impact of stress responses of populations and individuals is highly desirable

    Surviving the heat:Heterogeneity of response in Saccharomyces cerevisiae provides insight into thermal damage to the membrane

    Get PDF
    International audienceEnvironmental heat stress impacts on the physiology and viability of microbial cells with concomitant implications for microbial activity and diversity. Previously, it has been demonstrated that gradual heating of Saccharomyces cerevisiae induces a degree of thermal resistance, whereas a heat shock results in a high level of cell death. Here, we show that the impact of exogenous nutrients on acquisition of thermal resistance differs between strains.Using single‐cell methods, we demonstrate the extent of heterogeneity of the heat‐stress response within populations of yeast cells and the presence of subpopulations that are reversibly damaged by heat stress. Such cells represent potential for recovery of entire populations once stresses are removed. The results show that plasma membrane permeability and potential are key factors involved in cell survival, but thermal resistance is not related to homeoviscous adaptation of the plasma membrane. These results have implications for growth and regrowth of populations experiencing environmental heat stress and our understanding of impacts at the level of the single cell. Given the important role of microbes in biofuel production and bioremediation, a thorough understanding of the impact of stress responses of populations and individuals is highly desirable

    Resveratrol-Induced Xenophagy Promotes Intracellular Bacteria Clearance in Intestinal Epithelial Cells and Macrophages

    Get PDF
    Autophagy is a lysosomal degradation process that contributes to host immunity by eliminating invasive pathogens and the modulating inflammatory response. Several infectious and immune disorders are associated with autophagy defects, suggesting that stimulation of autophagy in these diseases should be beneficial. Here, we show that resveratrol is able to boost xenophagy, a selective form of autophagy that target invasive bacteria. We demonstrated that resveratrol promotes in vitro autophagy-dependent clearance of intracellular bacteria in intestinal epithelial cells and macrophages. These results were validated in vivo using infection in a transgenic GFP-LC3 zebrafish model. We also compared the ability of resveratrol derivatives, designed to improve the bioavailability of the parent molecule, to stimulate autophagy and to induce intracellular bacteria clearance. Together, our data demonstrate the ability of resveratrol to stimulate xenophagy, and thereby enhance the clearance of two invasive bacteria involved life-threatening diseases, Salmonella Typhimurium and Crohn's disease-associated Adherent-Invasive Escherichia coli. These findings encourage the further development of pro-autophagic nutrients to strengthen intestinal homeostasis in basal and infectious states

    Spectroscopie de Corrélation de Fluorescence : fluidité membranaire et détection de molécule unique en solution concentrée

    No full text
    Fluorescence correlation spectroscopy (FCS) is a single molecule technique very well suitedfor in vivo studies. We have used FCS to explore plasma membrane microfluidity of livingcells. Measurements were conducted at the single cell level, which enabled us to get a detailedoverview of the typical plasma membrane microviscosity distribution of each cell line studied(LR73, MCF7, KB3.1, MESSA and MDCKII). A Monte Carlo simulation based on a 2Ddiffusion model enables us to link the asymetric fluidity distribution profile with the plasmamembrane micro-organization. This result was used to determine the membrane organisationrelated to the surexpression of the P-glycoprotein (Pgp), a protein implicated in multidrugresistance. We also compare the membrane structuration of various cancer cell lines, eachcomes in two versions, a sensitive one and a resistant one to a chemotherapeutic drug : theDoxorubicin.Secondly, we propose a new excitation scheme based on a nonradiative energy transfert.This approach allow us to reduce the illumination depth of the microscope at the nanometricscale. We demonstrate its potential through two applications : FCS in micromolar solutionsand fluorescence imaging on cells adhesion areas.La Spectroscopie de CorrĂ©lation de Fluorescence (FCS) est une technique de molĂ©culesuniques particuliĂšrement bien adaptĂ©e aux Ă©tudes en milieu biologique. Elle est ici mise enoeuvre pour analyser localement la membrane plasmique de cellules vivantes. Dans un premiertemps, la distribution de la microfluiditĂ© membranaire de cellules vivantes a Ă©tĂ© caractĂ©risĂ©egrĂące Ă  des mesures de temps de diffusion par FCS. Nous avons ainsi pu Ă©tablir la loi dedistribution de la fluiditĂ© membranaire Ă  l’échelle de la cellule unique pour diffĂ©rentes lignĂ©escellulaires (LR73, MCF7, KB3.1, MESSA et MDCKII). Une simulation Monte-Carlo montrequ’un modĂšle simple de diffusion Ă  deux dimensions dans une matrice contenant des microdomainesvisqueux peut rendre compte de l’allure asymĂ©trique typique des distributions obtenues.Ce rĂ©sultat a Ă©tĂ© utilisĂ© pour Ă©valuer les modifications membranaires liĂ©es Ă  la surexpressionde la P-glycoprotĂ©ine, protĂ©ine responsable d’un phĂ©nomĂšne de rĂ©sistance Ă  la chimiothĂ©rapie.Nous avons Ă©galement comparĂ© la structuration membranaire de diverses lignĂ©es cancĂ©reuses,chacune se dĂ©clinant en une version sensible et une version rĂ©sistante Ă  un mĂ©dicament : laDoxorubicine.Dans un second temps, nous proposons une nouvelle mĂ©thode d’illumination locale basĂ©esur un transfert d’énergie non radiatif. Cette mĂ©thode permet de rĂ©duire la profondeur dechamp du microscope Ă  l’échelle nanomĂ©trique. Nous en dĂ©montrons ici le potentiel pourl’utilisation de la FCS dans des solutions micromolaires ainsi que pour l’imagerie de l’adhĂ©sioncellulaire

    Multiphoton Cascade Absorption in Single Molecule Fluorescence Saturation Spectroscopy

    No full text
    International audienceSaturation spectroscopy is a relevant method to investigate photophysical parameters of single fluorescent molecules. Nevertheless, the impact of a gradual increase, over a broad range, of the laser excitation on the intramolecular dynamics is not completely understood, particularly concerning their fluorescence emission (the so-called brightness). Thus, we propose a comprehensive theoretical and experimental study to interpret the unexpected evolution of the brightness with the laser power taking into account the cascade absorption of two and three photons. Furthermore, we highlight the key role played by the confocal observation volume in fluorescence saturation spectroscopy of single molecules in solution

    Spectroscopie de corrélation de fluorescence (fluidité membranaire et détection de molécule unique en solution concentrée)

    No full text
    La Spectroscopie de CorrĂ©lation de Fluorescence (FCS) est une technique de molĂ©cules uniques particuliĂšrement bien adaptĂ©e aux Ă©tudes en milieu biologique. Elle est ici mise en Ɠuvre pour analyser localement la membrane plasmique de cellules vivantes. Dans un premier temps, la distribution de la microfluiditĂ© membranaire de cellules vivantes a Ă©tĂ© caractĂ©risĂ©e grĂące Ă  des mesures de temps de diffusion par FCS. Nous avons ainsi pu Ă©tablir la loi de distribution de la fluiditĂ© membranaire Ă  l Ă©chelle de la cellule unique pour diffĂ©rentes lignĂ©es cellulaires (LR73, MCF7, KB3.1, MESSA et MDCKII). Une simulation Monte-Carlo montre qu un modĂšle simple de diffusion Ă  deux dimensions dans une matrice contenant des microdomaines visqueux peut rendre compte de l allure asymĂ©trique typique des distributions obtenues. Ce rĂ©sultat a Ă©tĂ© utilisĂ© pour Ă©valuer les modifications membranaires liĂ©es Ă  la surexpression de la P-glycoprotĂ©ine, protĂ©ine responsable d'un phĂ©nomĂšne de rĂ©sistance Ă  la chimiothĂ©rapie. Nous avons Ă©galement comparĂ© la structuration membranaire de diverses lignĂ©es cancĂ©reuses, chacune se dĂ©clinant en une version sensible et une version rĂ©sistante Ă  un mĂ©dicament : la Doxorubicine. Dans un second temps, nous proposons une nouvelle mĂ©thode d illumination locale basĂ©e sur un transfert d Ă©nergie non radiatif. Cette mĂ©thode permet de rĂ©duire la profondeur de champ du microscope Ă  l Ă©chelle nanomĂ©trique. Nous en dĂ©montrons ici le potentiel pour l'utilisation de la FCS dans des solutions micromolaires ainsi que pour l'imagerie de l'adhĂ©sion cellulaireFluorescence correlation spectroscopy (FCS) is a single molecule technique very well suited for in vivo studies. We have used FCS to explore plasma membrane microfluidity of living cells. Measurements were conducted at the single cell level, which enabled us to get a detailed over-view of the typical plasma membrane microviscosity distribution of each cell line studied (LR73, MCF7, KB3.1, MESSA and MDCKII). A Monte Carlo simulation based on a 2D diffusion model enables us to link the asymetric fluidity distribution profile with the plasma membrane micro-organization. This result was used to determine the membrane organisation related to the surexpression of the P-glycoprotein (Pgp), a protein implicated in multidrug resistance. We also compare the membrane structuration of various cancer cell lines, each comes in two versions, a sensitive one and a resistant one to a chemotherapeutic drug: the Doxorubicin. Secondly, we propose a new excitation scheme based on a nonradiative energy transfert. This approach allow us to reduce the illumination depth of the microscope at the nanometric scale. We demonstrate its potential through two applications: FCS in micromolar solutions and fluorescence imaging on cells adhesion areasTROYES-SCD-UTT (103872102) / SudocSudocFranceF

    Nonradiative Excitation Fluorescence Correlation Spectroscopy

    No full text
    International audienc

    Shedding Light on the Formation and Structure of Kombucha Biofilm Using Two-Photon Fluorescence Microscopy

    Get PDF
    International audienceKombucha pellicles are often used as inoculum to produce this beverage and have become a signature feature. This cellulosic biofilm produced by acetic acid bacteria (AAB) involves yeasts, which are also part of the kombucha consortia. The role of microbial interactions in the de novo formation and structure of kombucha pellicles was investigated during the 3 days following inoculation, using two-photon microscopy coupled with fluorescent staining. Aggregated yeast cells appear to serve as scaffolding to which bacterial cellulose accumulates. This initial foundation leads to a layered structure characterized by a top cellulose-rich layer and a biomass-rich sublayer. This sublayer is expected to be the microbiologically active site for cellulose production and spatial optimization of yeast–AAB metabolic interactions. The pellicles then grow in thickness while expanding their layered organization. A comparison with pellicles grown from pure AAB cultures shows differences in consistency and structure that highlight the impact of yeasts on the structure and properties of kombucha pellicles
    corecore