325 research outputs found

    Léon Marillier and the veridical hallucination in late-nineteenth- and early-twentieth-century French psychology and psychopathology.

    Get PDF
    Recent research on the professionalization of psychology at the end of the nineteenth century shows how objects of knowledge which appear illegitimate to us today shaped the institutionalization of disciplines. The veridical or telepathic hallucination was one of these objects, constituting a field both of division and exchange between nascent psychology and disciplines known as 'psychic sciences' in France, and 'psychical research' in the Anglo-American context. In France, Leon Marillier (1862-1901) was the main protagonist in discussions concerning the concept of the veridical hallucination, which gave rise to criticisms by mental specialists and psychopathologists. After all, not only were these hallucinations supposed to occur in healthy subjects, but they also failed to correspond to the Esquirolian definition of hallucinations through being corroborated by their representation of external, objective events.Andreas Sommer’s contribution to this article was made possible through support by the Perrott-Warrick Fund, Trinity College, University of Cambridge, and Cedar Creek Institute, Charlottesville, VA.This is the author accepted manuscript. The final version is available from SAGE via http://dx.doi.org/10.1177/0957154X1456275

    3DSC - A New Dataset of Superconductors Including Crystal Structures

    Full text link
    Data-driven methods, in particular machine learning, can help to speed up the discovery of new materials by finding hidden patterns in existing data and using them to identify promising candidate materials. In the case of superconductors, which are a highly interesting but also a complex class of materials with many relevant applications, the use of data science tools is to date slowed down by a lack of accessible data. In this work, we present a new and publicly available superconductivity dataset ('3DSC'), featuring the critical temperature TcT_\mathrm{c} of superconducting materials additionally to tested non-superconductors. In contrast to existing databases such as the SuperCon database which contains information on the chemical composition, the 3DSC is augmented by the approximate three-dimensional crystal structure of each material. We perform a statistical analysis and machine learning experiments to show that access to this structural information improves the prediction of the critical temperature TcT_\mathrm{c} of materials. Furthermore, we see the 3DSC not as a finished dataset, but we provide ideas and directions for further research to improve the 3DSC in multiple ways. We are confident that this database will be useful in applying state-of-the-art machine learning methods to eventually find new superconductors.Comment: 15 pages + 10 pages of supporting information; UPDATE: standardised formatting, removed double dash from title & updated github link

    Dill extract induces elastic fiber neosynthesis and functional improvement in the ascending aorta of aged mice with reversal of age-dependent cardiac hypertrophy and involvement of lysyl oxidase-like-1

    Get PDF
    Elastic fibers (90% elastin, 10% fibrillin-rich microfibrils) are synthesized only in early life and adolescence mainly by the vascular smooth muscle cells through the cross-linking of its soluble precursor, tropoelastin. Elastic fibers endow the large elastic arteries with resilience and elasticity. Normal vascular aging is associated with arterial remodeling and stiffening, especially due to the end of production and degradation of elastic fibers, leading to altered cardiovascular function. Several pharmacological treatments stimulate the production of elastin and elastic fibers. In particular, dill extract (DE) has been demonstrated to stimulate elastin production in vitro in dermal equivalent models and in skin fibroblasts to increase lysyl oxidase-like-1 (LOXL-1) gene expression, an enzyme contributing to tropoelastin crosslinking and elastin formation. Here, we have investigated the effects of a chronic treatment (three months) of aged male mice with DE (5% or 10

    Stiffness and thickness of the upper trapezius muscle increase after repeated climbing bouts in male climbers

    Get PDF
    Background Indoor climbing involves overloading the shoulder girdle, including the rotator cuff and upper trapezius muscles. This on the field study aimed to investigate the effects of repeated climbing bouts on morphological and mechanical measures of the upper trapezius muscle. Materials and Methods Fifteen experienced male climbers participated in the study. Rate of perceived exertion (RPE), blood lactate concentration ([La−]b), and stiffness and thickness over four points of the upper trapezius were assessed before and after a repeated climbing exercise. The procedure for the climbing exercise consisted of five climbs for a total time of 5-minutes per climb, followed by a 5-minute rest. Results The analysis showed an increase from baseline to after the 3rd climb (p ≤ 0.01) for RPE and after the 5th climb for [La−]b (p ≤ 0.001). Muscle stiffness and thickness increased at all points (1–2–3–4) after the 5th climb (p ≤ 0.01). We found spatial heterogeneity in muscle stiffness and thickness; muscle stiffness was the highest at Point 4 (p ≤ 0.01), while muscle thickness reached the highest values at points 1–2 (both p ≤ 0.01). Moreover, the analysis between the dominant and non-dominant shoulder showed greater stiffness after the 1st climb at Point 1 (p = 0.004) and after the 5th climb at Point 4 (p ≤ 0.001). Conclusions For muscle thickness, the analysis showed significant changes in time and location between the dominant and the non-dominant shoulder. Bilateral increases in upper trapezius muscle stiffness and thickness, with simultaneous increases in RPE and blood lactate in response to consecutive climbs eliciting fatigue

    Graph neural networks for materials science and chemistry

    Get PDF
    Machine learning plays an increasingly important role in many areas of chemistry and materials science, being used to predict materials properties, accelerate simulations, design new structures, and predict synthesis routes of new materials. Graph neural networks (GNNs) are one of the fastest growing classes of machine learning models. They are of particular relevance for chemistry and materials science, as they directly work on a graph or structural representation of molecules and materials and therefore have full access to all relevant information required to characterize materials. In this Review, we provide an overview of the basic principles of GNNs, widely used datasets, and state-of-the-art architectures, followed by a discussion of a wide range of recent applications of GNNs in chemistry and materials science, and concluding with a road-map for the further development and application of GNNs

    Concerted Action of Androgens and Mechanical Strain Shifts Bone Metabolism from High Turnover into an Osteoanabolic Mode

    Get PDF
    Adhesion of bone cells to the extracellular matrix is a crucial requirement for osteoblastic development and function. Adhesion receptors connect the extracellular matrix with the cyto-skeleton and convey matrix deformation into the cell. We tested the hypothesis that sex hormones modulate mechanoperception of human osteoblastic cells (HOB) by affecting expression of adhesion molecules like fibronectin and the fibronectin receptor. Only dihydrotestosterone (DHT), but not 17β-estradiol, stimulated fibronectin (137%) and fibronectin receptor (252%) protein expression. The effects of deformation strain on HOB metabolism were investigated in a FlexerCell® strain unit. Cyclically applied strain (2.5% elongation) increased DNA synthesis (125%) and interleukin-6 (IL-6) production (170%) without significantly affecting alkaline phosphatase (AP) activity, type I collagen (PICP), or osteoprotegerin (OPG) secretion. 10 nM DHT pretreatment abolished the mitogenic response of HOB to strain and increased AP activity (119%), PICP (163%), and OPG production (204%). In conclusion, mechanical strain stimulates bone remodeling by increasing HOB mitosis and IL-6 production. DHT enhances the osteoanabolic impact of deformation strain by increasing bone formation via increased AP activity and PICP production. At the same time, bone resorption is inhibited by decreased IL-6 and increased OPG secretion into the bone microenvironment

    Silver Paper - dokument końcowy europejskiego szczytu dotyczącego przyszłości promocji zdrowia, działań prewencyjnych, badań podstawowych i klinicznych aspektów chorób wieku podeszłego

    Get PDF
    The current article is a statement of the meeting with international and multidisciplinary participation, held in WrocÅ‚aw, Poland on September 11–13, 2008. The meeting was devoted to working out a position focusing on the challenge for individuals, health care systems, biological, psychosocial, epidemiological, medical, and public health sciences in the ageing populations of the twenty-first century. The statement is presented as an overview, in tabular format, of the current European situation regarding basic biological research on ageing, health promotion and preventive action, clinical care for older people, and recommendations for future actions.W niniejszym artykule przedstawiono ustalenia, jakie zapadÅ‚y podczas Europejskiego Szczytu poÅ›wiÄ™conego chorobom zwiÄ…zanym ze starzeniem - European Summit - Age Related Diseases, który odbyÅ‚ siÄ™ we WrocÅ‚awiu w dniach 11-13 wrzeÅ›nia. Celem tego miÄ™dzynarodowego spotkania, w którym uczestniczyli specjaliÅ›ci z różnych dziedzin medycyny byÅ‚o uzgodnienie wspólnego stanowiska na temat indywidualnych potrzeb chorych, systemów opieki medycznej, badaÅ„ biologicznych, psycho-spoÅ‚ecznych, epidemiologicznych i dotyczÄ…cych zdrowia publicznego w aspekcie starzenia siÄ™ populacji w XXI wieku. Stanowisko to przedstawiono w koÅ„cowym dokumencie zawierajÄ…cym charakterystykÄ™ obecnej sytuacji w Europie odnoÅ›nie do badaÅ„ podstawowych nad biologiÄ… procesów starzenia, promocji zdrowia i dziaÅ‚aÅ„ prewencyjnych, opieki klinicznej nad osobami w podeszÅ‚ym wieku, a także zalecenia na przyszÅ‚ość

    Prostanoid receptor EP1 and Cox-2 in injured human nerves and a rat model of nerve injury: a time-course study

    Get PDF
    BACKGROUND: Recent studies show that inflammatory processes may contribute to neuropathic pain. Cyclooxygenase-2 (Cox-2) is an inducible enzyme responsible for production of prostanoids, which may sensitise sensory neurones via the EP1 receptor. We have recently reported that while macrophages infiltrate injured nerves within days of injury, they express increased Cox-2-immunoreactivity (Cox-2-IR) from 2 to 3 weeks after injury. We have now investigated the time course of EP1 and Cox-2 changes in injured human nerves and dorsal root ganglia (DRG), and the chronic constriction nerve injury (CCI) model in the rat. METHODS: Tissue sections were immunostained with specific antibodies to EP1, Cox-2, CD68 (human macrophage marker) or OX42 (rat microglial marker), and neurofilaments (NF), prior to image analysis, from the following: human brachial plexus nerves (21 to 196 days post-injury), painful neuromas (9 days to 12 years post-injury), avulsion injured DRG, control nerves and DRG, and rat CCI model tissues. EP1 and NF-immunoreactive nerve fibres were quantified by image analysis. RESULTS: EP1:NF ratio was significantly increased in human brachial plexus nerve fibres, both proximal and distal to injury, in comparison with uninjured nerves. Sensory neurones in injured human DRG showed a significant acute increase of EP1-IR intensity. While there was a rapid increase in EP1-fibres and CD-68 positive macrophages, Cox-2 increase was apparent later, but was persistent in human painful neuromas for years. A similar time-course of changes was found in the rat CCI model with the above markers, both in the injured nerves and ipsilateral dorsal spinal cord. CONCLUSION: Different stages of infiltration and activation of macrophages may be observed in the peripheral and central nervous system following peripheral nerve injury. EP1 receptor level increase in sensory neurones, and macrophage infiltration, appears to precede increased Cox-2 expression by macrophages. However, other methods for detecting Cox-2 levels and activity are required. EP1 antagonists may show therapeutic effects in acute and chronic neuropathic pain, in addition to inflammatory pain
    • …
    corecore