55 research outputs found
Draft genome sequence of Desulfuromonas acetexigens strain 2873, a novel anode-respiring bacterium
Here, we report the draft genome sequence of Desulfuromonas acetexigens strain 2873, which was originally isolated from digester sludge from a sewage treatment plant in Germany. This bacterium is capable of anode respiration with high electrochemical activity in microbial electrochemical systems. The draft genome contains 3,376 predicted protein-coding genes and putative multiheme c-type cytochromes
Synthesis of an amorphous Geobacter-manganese oxide biohybrid as an efficient water oxidation catalyst
The development of a low cost and efficient oxygen evolution reaction (OER) catalyst has paramount importance to meet the future sustainable energy demand. Nature's photosynthetic machinery deploy manganese-based complex in the photosystem II to oxidize water. Inspired by nature, herein, we synthesized a high performing manganese-based OER catalyst using an electrochemically active and iron-rich bacterium, Geobacter sulfurreducens. The as-synthesized biohybrid catalyst (amorphous Geobacter-Mn2O3) produced a current density of 10 mA cmā2 at an overpotential of 290 Ā± 9 mV versus a reversible hydrogen electrode with a low Tafel slope of 59 mV decā1. The catalyst exhibited remarkable stability, evidenced through a long-term chronopotentiometry experiment. Multiple evidence showed that G. sulfurreducens contributed OER active elements (iron and phosphorus) to the biohybrid catalyst, and the as-synthesized Geobacter-Mn2O3 is amorphous. The amorphous structure of the biohybrid catalyst provided a large electrochemically active surface area and excess catalytic sites for the OER catalysis. In addition, Mn3+ present in the biohybrid catalyst is believed to be the precursor for oxygen evolution. The OER activity of the biohybrid catalyst outperformed commercial-Mn2O3, commercial-IrO2 and most of the benchmark precious OER catalysts, thus supporting its suitability for large-scale applications. The proposed green approach to synthesize a biohybrid catalyst paves a new avenue to develop robust and cost-effective electrocatalysts for energy-related applications
Dynamic Growth Rates of Microbial Populations in Activated Sludge Systems
Results of mathematical modeling and whole cell 16S ribosomal RNA-targeted fluorescence in situ hybridizations challenge the widely held perception that microbial populations in steady-state activated sludge systems share a common net growth rate that is proportional to the inverse of the mean cell residence time. Our results are significant because they encourage bioprocess engineers to appreciate the differences in growth physiology among individual microbial populations in complex mixed microbial communities such as suspended growth activated sludge bioreactor systems
Evaluation of electrode and solution area-based resistances enables quantitative comparisons of factors impacting microbial fuel cell performance
Direct comparisons of microbial fuel cells based on maximum power densities are hindered by different reactor and electrode sizes, solution conductivities, and materials. We propose an alternative method here, the electrode potential slope (EPS) analysis, to enable quantitative comparisons based on anodeand cathode area-based resistances and operating potentials. Using EPS analysis, the brush anode resistance (RAn = 10.6 Ā± 0.5 mĪ© m2) was shown to be 28% lower than the resistance of a 70% porosity diffusion layer (70% DL) cathode (RCat = 14.8 Ā± 0.9 mĪ© m2) and 24% lower than the solution resistance (RĪ© = 14 mĪ© m2) (acetate in a 50 mM phosphate buffer solution). Using a less porous cathode (30% DL) did not impact the cathode resistance but did reduce the cathode performance due to a lower operating potential. With low conductivity domestic wastewater (RĪ© = 87 mĪ© m2), both electrodes had higher resistances [RAn = 75 Ā± 9 mĪ© m2, and RCat = 54 Ā± 7 mĪ© m2 (70% DL)]. Our analysis of the literature using EPS analysis shows how electrode resistances can easily be quantified to compare system performance when the electrode distances are changed or the sizes of the electrodes are different
Bioinspired Synthesis of Reduced Graphene Oxide-Wrapped Geobacter sulfurreducens as a Hybrid Electrocatalyst for Efficient Oxygen Evolution Reaction
Doping/decorating of graphene or reduced graphene oxide (rGO) with heteroatoms provides a promising route for the development of electrocatalysts which will be useful in many technologies, including water splitting. However, current doping approaches are complicated, not eco-friendly, and not cost-effective. Herein, we report the synthesis of doped/decorated rGO for oxygen evolution reaction (OER) using a simple approach that is cost-effective, sustainable, and easy to scale up. The OER catalyst was derived from the reduction of GO by an exo-electron-transferring bacterium, Geobacter sulfurreducens. Various analytical tools indicate that OER active elements such as Fe, Cu, N, P, and S decorate the rGO flakes. The hybrid catalyst (i.e., Geobacter/rGO) produces a geometric current density of 10 mA cmā2 at an overpotential of 270 mV versus the reversible hydrogen electrode with a Tafel slope of 43 mV decā1 and possesses high durability, as evidenced through 10 h of stability testing. Electrochemical analyses suggest the importance of Fe and its possible role as an active site for OER. Overall, this work represents a simple approach toward the development of an earth-abundant, eco-friendly, and highly active OER electrocatalyst for various applications such as solar fuel production, rechargeable metalāair batteries, and microbial electrosynthesis
Recommended from our members
Draft Genome Sequence of the Anaerobic Ammonium-Oxidizing Bacterium āCandidatus Brocadia sp. 40ā
The anaerobic ammonium-oxidizing (anammox) bacterium āCandidatus Brocadia sp. 40ā demonstrated the fastest growth rate compared to others in this taxon. Here, we report the 2.93-Mb draft genome sequence of this bacterium, which has 2,565 gene-coding regions, 41 tRNAs, and a single rrn operon
High denitrification and anaerobic ammonium oxidation contributes to net nitrogen loss in a seagrass ecosystem in the central Red Sea
Nitrogen loads in coastal areas have increased dramatically, with detrimental consequences for coastal ecosystems. Shallow sediments and seagrass meadows are hotspots for denitrification, favoring N loss. However, atmospheric dinitrogen (N2) fixation has been reported to support seagrass growth. Therefore, the role of coastal marine systems dominated by seagrasses in the net N2 flux remains unclear. Here, we measured denitrification, anaerobic ammonium oxidation (anammox), and N2 fixation in a tropical seagrass (Enhalus acoroides) meadow and the adjacent bare sediment in a coastal lagoon in the central Red Sea. We detected high annual mean rates of denitrification (34.9 Ā± 10.3 and 31.6Ā±8.9 mg N mā2 dā1) and anammox (12.4Ā±3.4 and 19.8 Ā± 4.4 mg N mā2 dā1) in vegetated and bare sediments. The annual mean N loss was higher (between 8 and 63- fold) than the N2 fixed (annual mean = 5.9 Ā± 0.2 and 0.8 Ā± 0.3 mg N mā2 dā1) in the meadow and bare sediment, leading to a net flux of N2 from sediments to the atmosphere. Despite the importance of this coastal lagoon in removing N from the system, N2 fixation can contribute substantially to seagrass growth since N2 fixation rates found here could contribute up to 36 % of plant N requirements. In vegetated sediments, anammox rates decreased with increasing organic matter (OM) content, while N2 fixation increased with OMcontent. Denitrification and anammox increased linearly with temperature, while N2 fixation showed a maximum at intermediate temperatures. Therefore, the forecasted warming could further increase the N2 flux from sediments to the atmosphere, potentially impacting seagrass productivity and their capacity to mitigate climate change but also enhancing their potential N removal
Impact of Distribution and Network Flushing on the Drinking Water Microbiome
We sampled the tap water of seven unique, full-scale drinking water distribution systems at different locations as well as the corresponding treatment plant effluents to evaluate the impact of distribution and the potential presence of a core drinking water microbiome. The water was also sampled during network flushing to examine its effect on the microbial ecology. While a core microbiome dominated by Gammaproteobacteria was found using 16S rRNA gene pyrosequencing, an increase in biomass was detected in the networks, especially during flushing. Water age did not significantly impact the microbiology. Irrespective of differences in treatment plants, tap water bacterial communities in the distinct networks converged and highly resembled the flushed water communities. Piping biofilm and sediment communities therefore largely determine the final tap water microbial quality, attenuating the impact of water source and treatment strategy and highlighting the fundamental role of local physicochemical conditions and microbial processes within infrastructure micro-niches
Diversity of Dominant Bacterial Taxa in Activated Sludge Promotes Functional Resistance Following Toxic Shock Loading
Examining the relationship between biodiversity and functional stability (resistance and resilience) of activated sludge bacterial communities following disturbance is an important first step towards developing strategies for the design of robust biological wastewater treatment systems. This study investigates the relationship between functional resistance and biodiversity of dominant bacterial taxa by subjecting activated sludge samples, with different levels of biodiversity, to toxic shock loading with cupric sulfate (Cu[II]), 3,5-dichlorophenol (3,5-DCP), or 4-nitrophenol (4-NP). Respirometric batch experiments were performed to determine the functional resistance of activated sludge bacterial community to the three toxicants. Functional resistance was estimated as the 30 min IC50 or the concentration of toxicant that results in a 50% reduction in oxygen utilization rate compared to a referential state represented by a control receiving no toxicant. Biodiversity of dominant bacterial taxa was assessed using polymerase chain reaction-terminal restriction fragment length polymorphism (PCR-T-RFLP) targeting the 16S ribosomal RNA (16S rRNA) gene. Statistical analysis of 30 min IC50 values and PCR-T-RFLP data showed a significant positive correlation (P\u3c0.05) between functional resistance and microbial diversity for each of the three toxicants tested. To our knowledge, this is the first study showing a positive correlation between biodiversity of dominant bacterial taxa in activated sludge and functional resistance. In this system, activated sludge bacterial communities with higher biodiversity are functionally more resistant to disturbance caused by toxic shock loading
- ā¦