17 research outputs found

    Four Years of Airborne Measurements of Wildfire Emissions in California, with a Focus on the Evolution of Emissions During the Soberanes Megafire

    Get PDF
    Biomass burning is an important source of trace gases and particles which can influence air quality on local, regional, and global scales. With wildfire events increasing due to changes in land use, increasing population, and climate change, characterizing wildfire emissions and their evolution is vital. In this work we report in situ airborne measurements of carbon dioxide (CO2), methane (CH4), water vapor (H2O), ozone (O3), and formaldehyde (HCHO) from nine wildfire events in California between 2013 and 2016, which were sampled as part of the Alpha Jet Atmospheric eXperiment (AJAX) based at NASA Ames Research Center. One of those fires, the Soberanes Megafire, began on 22 July 2016 and burned for three months. During that time, five flights were executed to sample emissions near and downwind of the Soberanes wildfire. In situ data are used to determine enhancement ratios (ERs), or excess mixing ratio relative to CO2, as well as assess O3 production from the fire. Changes in the emissions as a function of fire evolution are explored. Air quality impacts downwind of the fire are addressed using ground-based monitoring site data, satellite smoke products, and the Community Multiscale Air Quality (CMAQ) photochemical grid model

    Organic Aerosol Component (OACOMP) Value-Added Product Report

    Get PDF
    Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties

    An extensive database of airborne trace gas and meteorological observations from the Alpha Jet Atmospheric eXperiment (AJAX)

    Get PDF
    The Alpha Jet Atmospheric eXperiment (AJAX) flew scientific flights between 2011 and 2018 providing measurements of trace gas species and meteorological parameters over California and Nevada, USA. This paper describes the observations made by the AJAX program over 229 flights and approximately 450 h of flying. AJAX was a multi-year, multi-objective, multi-instrument program with a variety of sampling strategies resulting in an extensive dataset of interest to a wide variety of users. Some of the more common flight objectives include satellite calibration/validation (GOSAT, OCO-2, TROPOMI) at Railroad Valley and other locations and long-term observations of free-tropospheric and boundary layer ozone allowing for studies of stratosphere-to-troposphere transport and long-range transport to the western United States. AJAX also performed topical studies such as sampling wildfire emissions, urban outflow and atmospheric rivers. Airborne measurements of carbon dioxide, methane, ozone, formaldehyde, water vapor, temperature, pressure and 3-D winds made by the AJAX program have been published at NASA's Airborne Science Data Center (https://asdc.larc.nasa.gov/project/AJAXTS9 (last access: 1 November 2022), https://doi.org/10.5067/ASDC/SUBORBITAL/AJAX/DATA001, Iraci et al., 2021a).</p

    Modeling NH4NO3 over the San Joaquin Valley During the 2013 DISCOVER-AQ Campaign

    Get PDF
    The San Joaquin Valley (SJV) of California experiences high concentrations of PM2.5 (particulate matter with aerodynamic diameter 2.5 m) during episodes of meteorological stagnation in winter. Modeling PM2.5 NH4NO3 during these episodes is challenging because it involves simulating meteorology in complex terrain under low wind speed and vertically stratified conditions, representing complex pollutant emissions distributions, and simulating daytime and nighttime chemistry that can be influenced by the mixing of urban and rural air masses. A rich dataset of observations related to NH4NO3 formation was acquired during multiple periods of elevated NH4NO3 during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign in SJV in January and February 2013. Here, NH4NO3 is simulated during the SJV DISCOVER-AQ study period with the Community Multiscale Air Quality (CMAQ) model version 5.1, predictions are evaluated with the DISCOVER-AQ dataset, and process analysis modeling is used to quantify HNO3 production rates. Simulated NO3- generally agrees well with routine monitoring of 24-h average NO3-, but comparisons with hourly average NO3- measurements in Fresno revealed differences at higher time resolution. Predictions of gas-particle partitioning of total nitrate (HNO3 + NO3-) and NHx (NH3 + NH4+) generally agreed well with measurements in Fresno, although partitioning of total nitrate to HNO3 was sometimes overestimated at low relative humidity in afternoon. Gas-particle partitioning results indicate that NH4NO3 formation is limited by HNO3 availability in both the model and ambient. NH3 mixing ratios are underestimated, particularly in areas with large agricultural activity, and the spatial allocation of NH3 emissions could benefit from additional work, especially near Hanford. HNO3 production via daytime and nighttime pathways is reasonably consistent with the conceptual model of NH4NO3 formation in SJV, and production peaked aloft between about 160 and 240 m in the model. During a period of elevated NH4NO3, the model predicted that the OH + NO2 pathway contributed 46% to total HNO3 production in SJV and the N2O5 heterogeneous hydrolysis pathway contributed 54%. The relative importance of the OH + NO2 pathway for HNO3 production is predicted to increase as NOx emissions decrease

    Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California

    No full text
    The San Joaquin Valley (SJV) in California experiences persistent air-quality problems associated with elevated particulate matter (PM) concentrations due to anthropogenic emissions, topography, and meteorological conditions. Thus it is important to unravel the various sources and processes that affect the physicochemical properties of PM in order to better inform pollution abatement strategies and improve parameterizations in air-quality models. During January and February 2013, a ground supersite was installed at the Fresno–Garland California Air Resources Board (CARB) monitoring station, where comprehensive, real-time measurements of PM and trace gases were performed using instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and an Ionicon proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) as part of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. The average submicron aerosol (PM1) concentration was 31.0 µg m−3 and the total mass was dominated by organic aerosols (OA, 55 %), followed by ammonium nitrate (35 %). High PM pollution events were commonly associated with elevated OA concentrations, mostly from primary sources. Organic aerosols had average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), and nitrogen-to-carbon (N / C) ratios of 0.42, 1.70, and 0.017, respectively. Six distinct sources of organic aerosol were identified from positive matrix factorization (PMF) analysis of the AMS data: hydrocarbon-like OA (HOA; 9 % of total OA, O / C  =  0.09) associated with local traffic, cooking OA (COA; 18 % of total OA, O / C  =  0.19) associated with food cooking activities, two biomass burning OA (BBOA1: 13 % of total OA, O / C  =  0.33; BBOA2: 20 % of total OA, O / C  =  0.60) most likely associated with residential space heating from wood combustion, and semivolatile oxygenated OA (SV-OOA; 16 % of total OA, O / C  =  0.63) and low-volatility oxygenated OA (LV-OOA; 24 % of total OA, O / C  =  0.90) formed via chemical reactions in the atmosphere. Large differences in aerosol chemistry at Fresno were observed between the current campaign (winter 2013) and a previous campaign in winter 2010, most notably that PM1 concentrations were nearly 3 times higher in 2013 than in 2010. These variations were attributed to differences in the meteorological conditions, which influenced primary emissions and secondary aerosol formation. In particular, COA and BBOA concentrations were greater in 2013 than 2010, where colder temperatures in 2013 likely resulted in increased biomass burning activities. The influence from a nighttime formed residual layer that mixed down in the morning was found to be much more intense in 2013 than 2010, leading to sharp increases in ground-level concentrations of secondary aerosol species including nitrate, sulfate, and OOA, in the morning between 08:00 and 12:00 PST. This is an indication that nighttime chemical reactions may have played a more important role in 2013. As solar radiation was stronger in 2013 the higher nitrate and OOA concentrations in 2013 could also be partly due to greater photochemical production of secondary aerosol species. The greater solar radiation and larger range in temperature in 2013 also likely led to both SV-OOA and LV-OOA being observed in 2013 whereas only a single OOA factor was identified in 2010

    Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: Results from DISCOVER-AQ California

    No full text
    The San Joaquin Valley (SJV) in California experiences persistent air-quality problems associated with elevated particulate matter (PM) concentrations due to anthropogenic emissions, topography, and meteorological conditions. Thus it is important to unravel the various sources and processes that affect the physicochemical properties of PM in order to better inform pollution abatement strategies and improve parameterizations in air-quality models. During January and February 2013, a ground supersite was installed at the Fresno-Garland California Air Resources Board (CARB) monitoring station, where comprehensive, real-time measurements of PM and trace gases were performed using instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and an Ionicon proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) as part of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. The average submicron aerosol (PM1) concentration was 31.0 μg m-3 and the total mass was dominated by organic aerosols (OA, 55%), followed by ammonium nitrate (35%). High PM pollution events were commonly associated with elevated OA concentrations, mostly from primary sources. Organic aerosols had average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), and nitrogen-to-carbon (N / C) ratios of 0.42, 1.70, and 0.017, respectively. Six distinct sources of organic aerosol were identified from positive matrix factorization (PMF) analysis of the AMS data: hydrocarbon-like OA (HOA; 9% of total OA, O / C = 0.09) associated with local traffic, cooking OA (COA; 18% of total OA, O / C = 0.19) associated with food cooking activities, two biomass burning OA (BBOA1: 13% of total OA, O / C = 0.33; BBOA2: 20% of total OA, O / C = 0.60) most likely associated with residential space heating from wood combustion, and semivolatile oxygenated OA (SV-OOA; 16% of total OA, O / C = 0.63) and low-volatility oxygenated OA (LV-OOA; 24% of total OA, O / C = 0.90) formed via chemical reactions in the atmosphere. Large differences in aerosol chemistry at Fresno were observed between the current campaign (winter 2013) and a previous campaign in winter 2010, most notably that PM1 concentrations were nearly 3 times higher in 2013 than in 2010. These variations were attributed to differences in the meteorological conditions, which influenced primary emissions and secondary aerosol formation. In particular, COA and BBOA concentrations were greater in 2013 than 2010, where colder temperatures in 2013 likely resulted in increased biomass burning activities. The influence from a nighttime formed residual layer that mixed down in the morning was found to be much more intense in 2013 than 2010, leading to sharp increases in ground-level concentrations of secondary aerosol species including nitrate, sulfate, and OOA, in the morning between 08:00 and 12:00 PST. This is an indication that nighttime chemical reactions may have played a more important role in 2013. As solar radiation was stronger in 2013 the higher nitrate and OOA concentrations in 2013 could also be partly due to greater photochemical production of secondary aerosol species. The greater solar radiation and larger range in temperature in 2013 also likely led to both SV-OOA and LV-OOA being observed in 2013 whereas only a single OOA factor was identified in 2010

    Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution from coal and biomass combustion

    No full text
    The North China Plain (NCP) frequently experiences heavy haze pollution, particularly during wintertime. In winter 2015–2016, the NCP region suffered several extremely severe haze episodes with air pollution red alerts issued in many cities. We have investigated the sources and aerosol evolution processes of the severe pollution episodes in Handan, a typical industrialized city in the NCP region, using real-time measurements from an intensive field campaign during the winter of 2015–2016. The average (±1σ) concentration of submicron aerosol (PM1) during 3 December 2015–5 February 2016 was 187.6 (±137.5) µg m−3, with the hourly maximum reaching 700.8 µg m−3. Organic was the most abundant component, on average accounting for 45 % of total PM1 mass, followed by sulfate (15 %), nitrate (14 %), ammonium (12 %), chloride (9 %) and black carbon (BC, 5 %). Positive matrix factorization (PMF) with the multilinear engine (ME-2) algorithm identified four major organic aerosol (OA) sources, including traffic emissions represented by a hydrocarbon-like OA (HOA, 7 % of total OA), industrial and residential burning of coal represented by a coal combustion OA (CCOA, 29 % of total OA), open and domestic combustion of wood and crop residuals represented by a biomass burning OA (BBOA, 25 % of total OA), and formation of secondary OA (SOA) in the atmosphere represented by an oxygenated OA (OOA, 39 % of total OA). Emissions of primary OA (POA), which together accounted for 61 % of total OA and 27 % of PM1, are a major cause of air pollution during the winter. Our analysis further uncovered that primary emissions from coal combustion and biomass burning together with secondary formation of sulfate (mainly from SO2 emitted by coal combustion) are important driving factors for haze evolution. However, the bulk composition of PM1 showed comparatively small variations between less polluted periods (daily PM2. 5  ≤  75 µg m−3) and severely polluted periods (daily PM2. 5  &gt;  75 µg m−3), indicating relatively synchronous increases of all aerosol species during haze formation. The case study of a severe haze episode, which lasted 8 days starting with a steady buildup of aerosol pollution followed by a persistently high level of PM1 (326.7–700.8 µg m−3), revealed the significant influence of stagnant meteorological conditions which acerbate air pollution in the Handan region. The haze episode ended with a shift of wind which brought in cleaner air masses from the northwest of Handan and gradually reduced PM1 concentration to  &lt;  50 µg m−3 after 12 h. Aqueous-phase reactions under higher relative humidity (RH) were found to significantly promote the production of secondary inorganic species (especially sulfate) but showed little influence on SOA
    corecore