20 research outputs found

    Macroscopic Car Condensation in a Parking Garage

    Full text link
    An asymmetric exclusion process type process, where cars move forward along a closed road that starts and terminates at a parking garage, displays dynamic phase transitions into two types of condensate phases where the garage becomes macroscopically occupied. The total car density ρo\rho_o and the exit probability α\alpha are the two control parameters. At the transition, the number of parked cars NpN_p diverges in both cases, with the length of the road NsN_s, as NpNsypN_p\sim N_s^{y_p} with yp=1/2y_p=1/2. Towards the transition, the number of parked cars vanishes as NpϵβN_p\sim \epsilon^\beta with β=1\beta=1, ϵ=αα\epsilon=|\alpha -\alpha^*| or ϵ=ρoρo\epsilon=|\rho^*_o -\rho_o| being the distance from the transition. The transition into the normal phase represents also the onset of transmission of information through the garage. This gives rise to unusual parked car autocorrelations and car density profiles near the garage, which depend strongly on the group velocity of the fluctuations along the road.Comment: 12 pages including 15 figures; published version in PR

    Integrated global assessment of the natural forest carbon potential

    Get PDF
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2,3,4,5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets

    E-Loyalty Building in Competitive E-Service Market of SNS: Resources, Habit, Satisfaction and Switching Costs

    No full text
    Part 1: Digital ServicesInternational audienceDespite considerable efforts have been devoted to study consumer loyalty, there is a lack of knowledge concerning how online service loyalty is or can be established in a competitive e-service market, in which several major service providers coexist to compete for customers. In this study, we attempt to explore the industry environment of Chinese social networking service (SNS), and examine the association between consumer satisfaction and switching costs in building service loyalty. From a resource-based view, unique service resources of SNS (critical mass and supplemental entertainment) are examined regarding their potentials in enhancing consumer satisfaction, habit and switching costs. The results show that habit and the interaction effect of satisfaction and switching cost are the key determinants of SNS loyalty. Critical mass and supplemental entertainment directly or indirectly affect habit and switching costs. This study attempts to bring the thought of competitive environment into e-service loyalty research while new insights for e-service loyalty building in different market environments are discussed
    corecore